Electrical Response and Thermal Damage Assessment of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating: A Computational Modeling Study

Ana González-Suárez¹,², Joel N. Jiménez-Lozano¹* and Walfre Franco¹

¹Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, USA
²Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València, Spain
*Currently at ZELTIQ Aesthetic, Inc., Pleasanton, California, USA

{agonzalezsuarez@partners.org, angonsua@eln.upv.es}

October 10th, 2013
Contents

1. Introduction
2. Mathematical modeling
3. Results
4. Conclusions
1. Introduction

2. Mathematical modeling

3. Results

4. Conclusions
Introduction

- **Epidermis**: outer cellular layer (~0.1 mm)
- **Dermis**: A dense connective tissue layer perfused with micro-vessels (~1 mm)
- **Hypodermis** (or **subcutaneous tissue**): a fine, collagenous and fibrous septa network with clusters of fat cells (1 cm to 10 cm)

- **Radiofrequency (RF) heating**
 A *non-invasive* technique can be used to produce *selective heating* of subcutaneous tissue

- **Clinical applications**
 - **Subcutaneous fat diseases**: Lipomatosis, Madelung’s disease, lipedema or cellulite
Objectives

- Model a real structure of subcutaneous tissue
- Assess the electrical and thermal effect of fibrous septa within subcutaneous tissue during RF hyperthermic heating (< 55°C)
- Quantify and compare the thermal damage occurred in two subcutaneous tissue structures (one composed by fat only and another by fat and fibrous septa)
1. Introduction

2. Mathematical modeling

3. Results

4. Conclusions
Mathematical modeling

- **Domain Geometry**

MRI skin of a female (Mirrashed, F., et al., Skin Research and Technology, 10, 2004).

RF monopolar applicator (Franco, W. et al. LSM 42, 2010)
Mathematical modeling

- **Governing Equations**

 - **Coupled electric-thermal problem**

 1. **Thermal problem**: Heat Transfer
 \[
 \rho c \frac{\partial T}{\partial t} = \nabla(k \nabla T) + Q_m + c_b \omega(T_b - T) + Q
 \]

 2. **Electric problem**: Electric Currents
 \[
 \nabla \sigma \nabla V = 0
 \]

 - **Thermal damage problem**

 3. **Arrhenius Equation**: Domain ODEs and DAEs
 \[
 \Omega(t) = \int_0^t A \cdot e^{\frac{-\Delta E}{RT}} dt
 \]

 - A and \(\Delta E \) for skin (Weaver and Stoll 1969)
 - \(\Omega = 1 \rightarrow \) lesion contour (transepidermal necrosis, 63% reduction in cell viability)
Boundary conditions

- Electrical conditions:
 - \(I = 0 \, A \)
 - \(V = 0 \)

- Thermal conditions:
 - \(T = 37^\circ C \)
 - \(T = 25^\circ C \)
 - \(h = 10 \, W/m^2K \), \(T_e = 25^\circ C \)

Equations:

- \(V_s(-L \leq y \leq L,0) = \left(a \left(\frac{1}{L} \right)^2 + b \right) \sqrt{PI} \)

Graph:

- The 100 W calculated curves based on 10 W and 20 W data. RMS Error at 100 W for the human equation applied to pork was ~13%.
- Recalculating coefficients based on the pig tests resulted in an RMS error of ~4% at 100 W.
Mathematical modeling

- **Thermal and electrical characteristics of the model elements**

<table>
<thead>
<tr>
<th>Element</th>
<th>ε_r</th>
<th>σ (S/m)</th>
<th>k (W/m·K)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg·K)</th>
<th>ω (kg/m3·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>1832.8</td>
<td>0.22</td>
<td>0.53</td>
<td>1200</td>
<td>3800</td>
<td>2</td>
</tr>
<tr>
<td>Fat</td>
<td>27.22</td>
<td>0.025</td>
<td>0.16</td>
<td>850</td>
<td>2300</td>
<td>0.6</td>
</tr>
<tr>
<td>Muscle</td>
<td>1836.4</td>
<td>0.5</td>
<td>0.53</td>
<td>1270</td>
<td>3800</td>
<td>0.5</td>
</tr>
<tr>
<td>Septa</td>
<td>1832.8</td>
<td>0.22</td>
<td>0.53</td>
<td>1200*</td>
<td>3800</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Main Physical assumptions**
 - Homogeneous tissues
 - Tissues have isotropic electric and thermal properties
 - Constant k, c and ω → variations are not significant within the 35-50°C range
 - Properties of the fibrous septa similar to those of the dermis
 - The perfusion term in the septa is neglected (i.e. fibrous septa as solid)
1. Introduction

2. Mathematical modeling

3. Results

4. Conclusions
Results

- Electric field

Subcutaneous tissue with fat only (no fibrous septa)

Subcutaneous tissue with fat and fibrous septa
Results

- Total electric power absorption (Q) and Electric currents (arrows)

Subcutaneous tissue with fat only (no fibrous septa)

Subcutaneous tissue with fat and fibrous septa

Time=2500 Surface: Total power dissipation density (W/mm²)
Arrow Surface: Current density (Material)
Results

- Temperature distribution and thermal damage

Subcutaneous tissue with fat only (no fibrous septa)

Subcutaneous tissue with fat and fibrous septa
Results

- Thermal damage quantification

The lesion volume is ~7 times higher considering fibrous septa.
1. Introduction

2. Mathematical modeling

3. Results

4. Conclusions
Conclusions

- Our results demonstrate the **importance** of including the fibrous septa when modeling RF heating of subcutaneous tissue:
 - The intensity and extent of the electric field in the subcutaneous tissue is increased considering fibrous septa network
 - Fibrous septa favors the flux of electric current → increasing the intensity of the electric field, which in turn increases power absorption within subcutaneous tissue
 - Neglecting the electric and thermal energy contributions of the fibrous septa results in underestimating thermal damage

- Our findings would be **useful** to design and develop novel devices and treatments to **subcutaneous fat diseases** during RF hyperthermic heating

Knowledge of correct dosimetry
Electrical Response and Thermal Damage Assessment of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating: A Computational Modeling Study

Acknowledgments

- R. Rox Anderson and Walfre Franco for the opportunity to train and conduct my research at the Wellman Center for Photomedicine
- Conselleria d’Educació of the Generalitat Valenciana: Predoctoral visiting fellowship BEFPI-2013 and grant Vall+D (ACIF/2011/194)