Numerical Model for Leaching & Transporting Behavior of Radiocesium in MSW Landfill

Hirovuki Ishimori 1, Hirofumi Sakanakura 2, Kazuto Endo 2, Masato Yamada 2, Masahiro Osako 2
1 Ritsumeikan University, 1-1-1 Noi-Hitashi, Kusatsu, Shiga, Japan, 525-8577
2 National Institute for Environmental Studies, 16-2 Onozawa, Tsukuba, Ibaraki, Japan, 305-0053

Radiocesium-Contaminated Wastes and Final Disposal ~Fukushima Daiichi nuclear disaster~

Leaching tests
~Radiocesium leachability to water~
Evaluate the leaching rate of radiocesium in incineration ashes

Soil sorption tests
~Distribution coefficient in leachate~
Measure the concentration in the solid phase using waste leachate

Numerical simulation model
~Radiocesium leaching and transporting behavior~
Flow Equation (Richard’s model)
\[\frac{\partial (\rho \phi \theta_s)}{\partial t} = \nabla \left[- \rho_s k_s \frac{K_s}{\rho_s + \rho_g \Phi} \nabla \theta_s \right] \]
Transport Equation (Advection-disperion model)
\[\frac{\partial (\rho \phi \theta_s)}{\partial t} + \nabla \cdot \left(- \rho_s k_s \frac{K_s}{\rho_s + \rho_g \Phi} \nabla \theta_s \right) = - \theta_s A_c \cdot \nabla \theta_s + R \]
Cs Leaching & Soil Sorption (Based on experimental results)
\[R = \rho_c k_c t + \rho_c \frac{\partial S}{\partial t} \]
Mass balance in solid phase (Including sorption and decay)
\[\frac{\partial S}{\partial t} = \beta (K_c - S) - AS \]

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston