Novel simulation of DC voltage Electro thermo mechanical MEMS self-oscillator

OUENZERFI SAFOUENE PhD

COMSOL CONFERENCE
ROTTERDAM2013

Ecole Polytechnique de Tunisie
MEMS oscillators

Principle electro thermo mechanical oscillator

Modeling

Use of COMSOL

Future work
MEMS OSCILLATOR

An oscillator consists of a frequency selective element, which is the mechanical resonator, and a gaining element which is the feedback amplifier.

The feedback or sustaining amplifier is required to sustain a resonance in the frequency selective element.

Resonator and amplification separated; integrated with the CMOS die in the same package.
ELECTRO-THERMO-MECHANICAL OSCILLATOR

- NXP semiconductor (2009) and Rahafrooz (Denver 2010).
- The closed loop (self amplification) is obtained by crossing interaction between three physical domains: Joule heating (thermal domain), thermal expansion (mechanical domain) and piezoresistivity effect (electrical domain).

The resistive heating power in the nanobeam, results in an increasing temperature, after a thermal delay. The temperature increase causes a thermal expansion force, which acts as a feedback force on the mass.

The displacement of the resonator mass is amplified, because it modulates the resistive heating power in the nanobeam via the piezoresistive effect, which results in a power variation.

- Single crystal silicon resonator structure spontaneously starts to oscillate.

Feedback with piezoresistivity modulation
Resistive heating power increase = ΔT

Thermal expansion

$\frac{\Delta X}{X_0} = \alpha \Delta T$

Compression

$\Delta X \rightarrow \frac{\Delta R}{R} < 0$

$\frac{\Delta R}{R} = \pi_t \sigma_t = \pi_t E \frac{\Delta X}{X_0}$

Dilatation

$\Delta X > 0$

$\frac{\Delta R}{R} > 0$

$\frac{\Delta R}{R} = \pi_t \sigma_t = \pi_t E \frac{\Delta X}{X_0}$
ANALYTICAL MODEL

Barkhausen criteria

\[|A(\omega)\beta(\omega)| = 1 \quad \text{and the phase } [A(\omega)\beta(\omega)] = 2\pi n, \quad n \in 0, 1, 2, \ldots \]

Novelty

- DC voltage driven oscillator (more simple) and positive coefficient of piezoresistivity (most common)

Bloc diagram model

Conditions of oscillation

DC voltage

\[
\omega_{0osc}^2 = \omega_0^2 (1 + 1/C_{th}R_{th}\omega_0 Q_{int})
\]

\[
V_{dc}^2 = \frac{R_{dc}}{Q_{int}} \frac{1 + \omega_0^2 C_{th}^2 R_{th}^2}{C_{th}R_{th}^2 \omega_0 \alpha K_{pr}}
\]
COMSOL SIMULATION (OSCILLATOR)

- **Piezoresistivity effect**: Electrical conductivity expression of the material as a function of the stress due to the piezoresistivity property of silicon.

- **Simulation time optimization**: Stationary study as initial values for the complete Time dependent study.

- **Simulation “stabilization”: Hyperelastic material** to accentuate the nonlinearity effect of the material.

Run implanting the piezoresistivity effect and presenting the growth oscillation aspect. *(Time dependent simulation)*
Parametric sweep simulation to check the threshold limit voltage condition
FUTURE WORK

Fabrication

1. Spin on photoresist
2. Pattern and develop photoresist (mask)
3. Spin on photoresist
4. Remove photoresist
5. HF release (removed part of the mask)

Silicon On Insulator Wafers (SOI)

Measurements (just started)

Applications

- Timing devices
- Sensors (gaz sensor)
- Heat engine, pumps..
- Sustained self system
- Energy harvesting..
THANK YOU FOR YOUR ATTENTION
ACKNOWLEDGMENTS

Xavier Rottenberg
MDM leader group
IMEC

Tilmans Harrie
Project manager & Principal Scientist
IMEC

Makarem Hussein
Founding Director, Technology and Manufacturing Group,
Intel Corporation (USA)

Ahmed Morsy, MS student, IMEC