

Electronics & Photonics Department

Optoelectronic Simulation of an Organic Bulk Heterojunction Solar Cell with COMSOL

> Koh Wee Shing 24 Oct 2013

Outline

- Definitions of Measures of Solar Cells
- Overview of Processes in an Organic BHJ Solar Cell
- Device Model:
 - > Optical
 - Polaron Generation & Carrier Recombination
 - Charge Transport
- Validation & Calibration of Simulation Model with Experiment
- Plasmonic OPV device
- Summary
- Acknowledgements

Definitions of Measures of Solar Cells

Review of Physics of Organic Solar Cells

- Basic Processes
 - > Optical Illumination & Absorption (in whole structure)
 - Polaron Generation & Carrier Recombination (in P3HT:PCBM only)
 - Carrier Transport (in P3HT:PCBM only)

Other OPV device model

- 1D electronic model from University of Groningen, The Netherlands developed by Koster et al (PRB 72, 085205, 2005) for BHJ solar cells
 - > Constant optical generation in active layer assumed
- 2D optoelectronic model from University of Bath, UK by J. Williams et al (Nanotechnology 19, 424011, 2008)
 - > Only single wavelength illumination demonstrated
- 3D optoelectronic model by Koh et al
 - Reduced recombination factor (IEEE Journal of PV, 1, 84, 2011)
 - > Non-germinate recombination due to traps (SPIE Photonic West OPTO Symposium 2013)

Optical

Solve the Frequency-Domain Maxwell Equations:

$$\nabla \times \overrightarrow{H}_{opt} = j2\pi \mathcal{V}\mathcal{E}_{r}\mathcal{E}_{0}\overrightarrow{E}_{opt} \qquad \text{where } \overrightarrow{H}_{opt} = \text{magnetic field vector} \\ \overrightarrow{E}_{opt} = \text{electric field vector} \\ \nabla \times \overrightarrow{E}_{opt} = -j2\pi \mathcal{V}\mu_{0}\overrightarrow{H}_{opt} \qquad \overrightarrow{E}_{r} = \mathcal{E}_{1} - j\mathcal{E}_{2} = \text{relative permittivity}$$

Spectral absorbed energy density in the photoactive layer (P3HT:PCBM) at each position (x, y, z) [1]:

$$Q(v, x, y, z) = \frac{1}{2} c \varepsilon_0 \alpha \eta E_{opt}^{2}$$

1) J. Williams et al, Nanotechnology, 19, 424011 (2008)

where c = speed of light

 $\alpha = \frac{2\pi\kappa}{\lambda} = \text{absorption coefficient}$ $\lambda = \text{wavelength of incoming light}$ $\kappa = \text{imaginary part of refractive index}$ $\eta = \text{real part of refractive index}$

Polaron Generation & Carrier Recombination

• Generation of polarons at each frequency v and position (x, y, z)

$$G(v, x, y, z) = \frac{Q}{hv} = \frac{\pi \varepsilon_2 \varepsilon_0}{h} E_{opt}^{2}$$

Integrate the frequency dependent G over the AM1.5G solar spectrum

$$G_{tot}(x, y, z) = \int_{AM1.5G} G(v, x, y, z) S(v) dv$$

where S(v) = spectral density of the AM1.5G solar spectrum

Polaron Generation & Carrier Recombination

At steady state and at each position (x, y, z) in the active layer (P3HT:PCBM), the net free carriers generated [2] is

where X = polaron concentration

 $k_d X = G - k_f X + R$

 k_d = polaron dissocation rate constant k_f = polaron decay rate constant

R =carrier bimolecular recombination rate constant

From Osnager & Braun's germinate theory,

[2]

where a = mean polaron (bound e & h) separation distance

$$k_{d}(a,T,E) = \frac{3\gamma}{4\pi a^{3}} e^{-\frac{E_{b}}{k_{b}T}} \frac{J_{1}(2\sqrt{-2b})}{\sqrt{-2b}} \qquad \begin{array}{l} T = \text{temperature} \\ E = \text{electrostatic electric field in organic semiconductor} \\ E_{b} = \frac{q^{2}}{4\pi\varepsilon_{r}\varepsilon_{0}a} = \text{polaron binding energy} \\ k_{b} = \text{Boltzmann constant} \\ b = \frac{q^{3}E}{8\pi\varepsilon_{r}\varepsilon_{0}k_{b}^{2}T^{2}} \\ J_{1} = \text{Bessel function of first order} \\ \gamma = \frac{q}{\varepsilon_{r}\varepsilon_{0}}(\mu_{n} + \mu_{p}) = \text{Langevin factor} \\ \mu_{n(p)} = \text{mobility of electrons (holes)} \end{array}$$

Polaron Generation & Carrier Recombination

The decay rate constant k_f can also be derived from Osnager and Braun's model with the following relation to k_d :

$$k_{f} = \frac{1-P}{P}k_{d}$$
where $P = \int_{\infty}^{0} p(r,T,E) f(r,a) dr$ = average probability of polaron dissociation
$$p = \frac{k_{d}}{k_{d}+k_{f}}$$
 = probability of dissocation of polarons with e - h separation r
$$f = \frac{4}{\sqrt{\pi}a^{3}}r^{2}e^{\frac{r^{2}}{a^{2}}}$$
 = Gaussian distribution for r as the polymer is a disordered material [3]

The recombination rate of free carriers to polarons R_{n,p} can be described by the using a trap model which will enable us to account for the dark current generated due to traps [4]:

$$R_{n} = \gamma [n_{f} p_{t} - n_{i} p_{i}]$$
$$R_{p} = \gamma [p_{f} n_{t} - n_{i} p_{i}]$$

- 3) J. A. Barker et al, PRB, 67, 075205 (2003)
- 4) N. C. Giebink et al, PRB 82, 155305 (2010)

where
$$n_t(p_t)$$
 = trapped electron(hole) concentration

 $n_f(p_f) =$ free electron(hole) concentration

 $n_i(p_i)$ = intrinsic carrier concentration

Device Model: Charge Transport

Drift diffusion equations

$$J_n = -en_f \mu_n \nabla V + eD_n \nabla n_f$$

$$J_p = -ep_f \mu_p \nabla V + eD_p \nabla p_f$$

Poisson equation

$$\nabla^2 V = \frac{q}{\varepsilon_0 \varepsilon_r} \left(n_f + n_t - p_f - p_t \right)$$

Continuity equation

$$\frac{dn}{dt} = \frac{1}{q} \nabla J_n + k_d X - R_n = 0 \quad \text{(steady state)}$$
$$\frac{dp}{dt} = \frac{1}{q} \nabla J_p + k_d X - R_p = 0 \quad \text{(steady state)}$$

Boundary Conditions
At hole-ohmic PEDOT:PSS
$n_{f,cathode} = N_{LUMO} \exp\left(-\frac{E_{gap}}{k_B T}\right)$
$p_{f,cathode} = P_{HOMO}$
$V_{cathode} = V_a - \frac{E_{gap}}{q}$
At electron-ohmic Ca
$n_{f,anode} = N_{LUMO}$
$p_{f,anode} = P_{HOMO} \exp\left(-\frac{E_{gap}}{k_B T}\right)$
$V_{anode} = 0$

Validation and Calibration of Simulation Model with Experiment

*Simulated J-V curves (symbols) *Experimental J-V curves courtesy of IMRE (solid line)

Simulation Parameters

Parameter	Symbol	Simulation Value	Remarks	
Bandgap	E_{gap}	1.1eV	LUMO (PCBM=-4eV) [5], HOMO (P3HT)=-5.1eV [6]	
E-h pair separation	а	1.15nm	Related to k _d [from Ref 7]	
Electron mobility	μ_n	0.7 x10 ⁻⁴ cm ² /Vs	Experimental Measurement=~10 ⁻⁴ cm ² /Vs	
Hole mobility	μ_{p}	0.7 x10 ⁻⁴ cm ² /Vs	Experimental Measurement=~10 ⁻⁴ cm ² /Vs	
Decay rate	k _f	3x10 ⁴	Constrained Fitting Parameter	
E-h pair separation	а	1.15nm	Related to k _d [from Ref 7]	
P3HT:PCBM relative permittivity	ε _r	3.4	Average Value of P3HT & PCBM	
Characteristic temperature of trapped electrons (holes)	T _{t,A} (T _{t,D})	1200K	Unique fitting parameter for dark current	
Density of states of free electrons (holes)	N _{LUMO} (P _{HOMO})	4.2x10 ²² cm ⁻³	Constrained Fitting Parameter related to $T_{t,A}$ ($T_{t,D}$)	
Density of states of trapped electrons (holes)	$H_A(H_D)$	2x10 ¹³ cm ⁻³	Constrained Fitting Parameter related to $T_{t,A}$ ($T_{t,D}$)	
Series Resistance	R _s	1.8Ω	Experimental measurement is $\sim 1-2\Omega$	

5) M. D. Irwin et al, PNAS, 105, 2783-2787 (2007)

6) M. C. Scharber et al, Advanced Materials, 18, 789-794 (2006)

7) W. S. Koh et al, IEEE J. Photovoltaics, 1, 84-92 (2011)

Plasmonic OPV (POPV) Device: Optical & Polaron Generation

Structure with 200nm (long axis) by 40nm (short axis) Ag nanoellipsoid in PEDOT:PSS @ 1% coverage is illuminated by AM1.5G spectrum

POPV Device: Carrier Transport

POPV Device: J-V Characteristics

- ♦ % enhancement in Jsc is approx % ↑ in optical absorption
- ↓ temperature → ↑Voc is consistent with experimental behavior small molecule OPV device by Giebink et al.
 [4]

Device Characteristic	Control Cell (Experiment)	Control Cell (T=300K)	POPV Cell (T=300K)	POPV Cell (T=250K)
V _{oc} (V)	0.55	0.55	0.55	0.64
J _{sc} (mA/cm²)	9.61	9.61	9.76	10
Efficiency (%)	3.6	3.76	3.82	4.6
Fill Factor	0.68	0.71	0.71	0.72

Summary

- Developed a full 3D optoelectronic model for organic bulkheterojunction solar cell
- ✤ Validated our model with experiment for a control structure
- Illustrate and predict both optical and electrical characteristics of a 3D Plasmonic OPV device
- Open up possibilities to design and simulate nanostructure enhanced organic bulk-heterojunction solar cells.
- Device physics is applicable for both polymer and small moleculebased organic bulk-heterojunction solar cells.

Thank You for your Attention

Any Questions?