

COMSOL CONFERENCE SEOUL2013

Optical Modeling of Organic Solar Cells Using the COMSOL

Kyung Hee University

Jungho Kim

What is a solar cell?

- To generate electrical power converted from the sunlight
- Cost effective and pollution-free solutions to energy shortage problems
- To achieve sufficient power-conversion efficiency

Organic solar cells (OSCs)

- Advantages
 - Low-cost and easy processing
 - * Printable OSCs
 - Versatile uses and applications
 - * Flexible OSCs

http://cdn.ubergizmo.com/photos/ 2009/2/ konarka-solar.jpg

- Challenges
 - Low efficiency (10.6%)
 - Short device lifetime

http://evworld.com/press/ konarka_solarcanopy.jpg

Optical interference effect on thin-film OSCs

- Due to the optical reflection at each interface, optical interference effect occurs between the forward- and backward-propagating waves.
- The spatial distribution of the electromagnetic field depends on the optical interference effect.
- Optical modeling is important to improve the absorption efficiency of thin-film OSCs due to optical interference effect.

Analytical model: the transfer matrix method

$$\begin{bmatrix} E_{0R}^{+} \\ E_{0R}^{-} \end{bmatrix} = \mathbf{S}^{1/(m+1)} \begin{bmatrix} E_{(m+1)L}^{+} \\ E_{(m+1)L}^{-} \end{bmatrix} = \begin{bmatrix} S_{11}^{1/(m+1)} & S_{12}^{1/(m+1)} \\ S_{21}^{1/(m+1)} & S_{22}^{1/(m+1)} \end{bmatrix} \begin{bmatrix} E_{(m+1)L}^{+} \\ E_{(m+1)L}^{-} \end{bmatrix} = \mathbf{I}^{1/2} \mathbf{L}^{2} \mathbf{I}^{2/3} \cdots \mathbf{L}^{m} \mathbf{I}^{m(m+1)} \begin{bmatrix} E_{(m+1)L}^{+} \\ E_{(m+1)L}^{-} \end{bmatrix}$$

• The light propagation within thin films can be described by means of the interface matrix (*I*) and the layer matrix (*L*).

• The optical electric field at any position in the j-th layer can be calculated based on the combination of the matrix.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).

Numerical model: the finite element method

 $\nabla^2 \vec{E} + k^2 \vec{E} = 0$

- Finite element method (FEM) directly solves the Maxwell's equations.
- •The system is divided into meshes of 5~10 nm boundary length.
- The commercial product COMSOL[™] is used for simulation.

OSC device structure for optical modeling

Normal incidence		r1 r2 r3 r4 r5		Material	Thickness
				Glass	400 nm
				ΙΤΟ	50 nm
	r6			PEDOT:PSS	50 nm
				P3HT:PCBM	50 nm
				Spacer	50 nm
				AI	100 nm

- Thin multi-layered structure leads to the optical interference effect in each layer.
- The optical spacer layer, having very high electrical conductivity and no optical absorption coefficient, adjusts the optical field distribution in the OSC.

Comparison of the calculated results between the TMM and the FEM

Electric field distribution

Magnetic field Distribution

Key parameters related with absorptivity

• Time-average Poynting vector

$$\overline{\mathbf{S}} = \frac{1}{2} \operatorname{Re} \left(\mathbf{E} \times \mathbf{H}^* \right)$$
 - power flow

• Power dissipation

 $Q_z = -\frac{dS_z}{dz}$ - optical power absorbed by the material

- $=\frac{1}{2}c\varepsilon_0 n_j \alpha_j \left| E_y \right|^2$
- Absorptivity at the active layer

$$A_{z} = \int_{z_{1}}^{z_{2}} Q_{z} dz = \frac{\overline{\mathbf{S}}_{1} - \overline{\mathbf{S}}_{2}}{\overline{\mathbf{S}}_{input}}$$

Shaped-substrate OSCs for light trapping

S.-B. Rim et al., Appl. Phys. Lett. 91, 243501 (2007).

V. Andersson et al., J. Appl. Phys. 103, 094520 (2008).

- Folded OSCs can increase light trapping and the external quantum efficiency.
- This analysis is very important for developing flexible or wearable OSCs.

Device structure for V-shaped OSCs

- Device structure: ITO (90nm)/PEDOT:PSS (30nm)/ P3HT:PCBM (80nm)/spacer (x nm)/AI (100nm)
- Effect of thickness of the active and spacer layers on the light trapping effect is investigated.

Calculated power dissipation vs. folding angle

500

1000

1500

2000

▼ -5.9878×10⁻¹²

-200

-2000

-1500

-1000

-500

α = 70°

 High power dissipation near the tip of the V-shaped OSC results in the enlarged light trapping at that position.

Calculated power dissipation vs. polarization

- The power dissipation at the small folding angles (α=20°~50°) is higher than that of the planar cell (α=90°).
- TM-polarized light shows the better performance improvement in the V-shaped OSC than TE-polarized light.

Summary

• Optical modeling of OSCs is very important due to the optical interference effect in thin-film multilayers.

• The validity of the calculated results based on the FEM (COMSOL) is demonstrated in OSCs comparison with those obtained by the TMM.

 The optical absorption property of the V-shaped OSC is calculated and analyzed based on the FEM (COMSOL) in terms of the polarization dependency.