Strong Localization and Rapid Time Scales of Superheating in Solid-State Nanopores

Edlyn V. Levine

October 9, 2014
Nanopore Heating

- Voltage source (V)
- 70 nm thickness
- 100 nm distance
- 3M NaCl solution
- Si$_3$N$_4$ material

Edlyn V. Levine
Superheating in Nanopores
COMSOL 2014
Nanopore Heating

3M NaCl

Si$_3$N$_4$

Edlyn V. Levine
Superheating in Nanopores
COMSOL 2014
Nanopore Heating

3M NaCl

Si$_3$N$_4$
Nanopore Heating

3M NaCl

Si₃N₄
Experimental Results: Pore Conductance

Conductance [μS] vs. Time [μs]

Initial Conductance, 1.15 μS

V = 4.0 V, 5.0 V, 6.0 V, 7.0 V, 8.22 V
Experimental Results: Pore Conductance

Conductance [µS] vs Time [µs]

8.22 V
Experimental Results: Pore Conductance

- Conductance [μS]
- Time [μs]
- Fall Time ~ 1 ns
- 604 K
- 117 ns
- 8.22V
- 16 ns
Motivating Question

How hot is the pore center?
Motivating Question

How hot is the pore center?

– No experimental means of measuring
Motivating Question

How hot is the pore center?

– No experimental means of measuring
– Appeal to COMSOL modeling
Motivating Question

How hot is the pore center?

- No experimental means of measuring
- Appeal to COMSOL modeling

Can heating dynamics explain nonlinear conductivity measured before a nucleation event?
COMSOL Modeling

- Geometry
- Governing Equations: Joule Heating
- Material Properties
- Boundary Conditions
- Results
COMSOL Modeling

- Geometry
- Governing Equations: Joule Heating
- Material Properties
- Boundary Conditions
- Results
Nanopore Geometry

- 2D Axisymmetry
- External boundary at S is on the order of 200 microns
COMSOL Modeling

- Geometry

- Governing Equations: Joule Heating

- Material Properties

- Boundary Conditions

- Results
Governing Equations: Joule Heating

Heat Equation: \[\rho C_p \frac{\partial}{\partial t} T = \nabla \cdot [\kappa \nabla T] + Q \]
Governing Equations: Joule Heating

Heat Equation: \[\rho C_p \frac{\partial}{\partial t} T = \nabla \cdot \left[\kappa \nabla T \right] + Q \]

Source Term: \[Q = J_t \cdot E \]
Governing Equations: Joule Heating

Heat Equation: \[\rho C_p \frac{\partial}{\partial t} T = \nabla \cdot [\kappa \nabla T] + Q \]

Source Term: \[Q = J_t \cdot E \]

Continuity Equation: \[\nabla \cdot J_t = q_i \]

\[J_t = \sigma E + \varepsilon_0 \varepsilon_r \frac{\partial}{\partial t} E + J_{ex} \]

\[E = -\nabla V \]
Governing Equations: Joule Heating

Heat Equation: \[\rho C_p \frac{\partial}{\partial t} T = \nabla \cdot [\kappa \nabla T] + Q \]

Source Term: \[Q = J_t \cdot E \]

Continuity Equation: \[\nabla \cdot J_t = q_i = 0 \]

\[J_t = \sigma E + \varepsilon_0 \varepsilon_r \frac{\partial}{\partial t} E + \mathbf{J}_{ex} = 0 \]

\[E = -\nabla V \]
Governing Equations: Joule Heating

Heat Equation: \[\rho C_p \frac{\partial}{\partial t} T = \nabla \cdot [\kappa \nabla T] + Q \]

Source Term: \[Q = J_t \cdot E \]

Continuity Equation: \[\nabla \cdot J_t = 0 \]

\[J_t = \sigma E + \epsilon_0 \epsilon_r \frac{\partial}{\partial t} E \]

\[E = -\nabla V \]
COMSOL Modeling

- Geometry
- Governing Equations: Joule Heating
 - Material Properties
- Boundary Conditions
- Results
Material Properties

• Require material data for superheated water
 – Not available in COMSOL
 – Obtained from IAPWS-95 equation of state
Material Properties

• Require material data for superheated water
 – Not available in COMSOL
 – Obtained from IAPWS-95 equation of state

• Amorphous Silicon Nitride thin film
 – Different thermal conductivity than bulk
Material Properties

• Require material data for superheated water
 – Not available in COMSOL
 – Obtained from IAPWS-95 equation of state

• Amorphous Silicon Nitride thin film
 – Different thermal conductivity than bulk

• What about electrical conductivity of 3M NaCl solution?
Conductivity 3M NaCl Solution

Joule Heating:
\[\sigma(T)E^2 \]

COMSOL Modeling

• Geometry
• Governing Equations: Joule Heating
• Material Properties
 • Boundary Conditions
• Results
Boundary Conditions

\[n \cdot J = 0 \]

\[V = 0 \]

Voltage Source

Axisymmetric Boundary
COMSOL Modeling

• Geometry
• Governing Equations: Joule Heating
• Material Properties
• Boundary Conditions

• Results
Nanopore Heating

8.22V pulse applied for 10.4µs
Nanopore Heating

8.22V pulse applied for 10.4µs

Temperature [K]

470K 600K

100 [nm]
Experimental Results: Pore Conductance

- Conductance: [µS]
- Time: [µs]
- Voltage Levels: 8.22 V, 7.0 V, 6.0 V, 5.0 V, 4.0 V
- Initial Conductance: 1.15 [µS]
Experimental Results: Pore Conductance

Initial Conductance, 1.15 μS

Conductance [μS]

Time [μs]

8.22 V 603 K
7.0 V 485 K
6.0 V 409 K
5.0 V 359 K
4.0 V 329 K
Conclusions

• Nanopore heating experiments
 – Temperature at the center of the pore: 600K
 – Close to kinetic limit of superheat
 – Not possible to experimentally measure

• Modeled using COMSOL Joule Heating Module
 – Flexibility to incorporate specialized material data
Acknowledgements

• Group
 – Prof. Jene Golovchenko
 – Gaku Nagashima
 – Dr. Dave Hoogerheide
 – Dr. Mike Burns
 – Golovchenko Group

• Funding
 – NSF Graduate Research Fellowship Program (NSF-GRFP)
 – National Defense Science and Engineering Graduate Fellowship (NDSEG)

Governing Equations: Joule Heating

$$\nabla \cdot \left(\sigma E + \frac{\partial}{\partial t} D \right) = \nabla \cdot (\sigma E) + \frac{\partial \rho}{\partial t} = 0$$
Governing Equations: Joule Heating

\[\nabla \cdot \left(\sigma \mathbf{E} + \frac{\partial}{\partial t} \mathbf{D} \right) = \nabla \cdot (\sigma \mathbf{E}) + \frac{\partial \rho}{\partial t} = 0 \]

\[\frac{\partial \rho}{\partial t} = -\nabla \cdot (\sigma \mathbf{E}) = -\nabla \sigma \cdot \mathbf{E} - \sigma \nabla \cdot \mathbf{E} \]
Governing Equations: Joule Heating

\[\nabla \cdot \left(\sigma \mathbf{E} + \frac{\partial}{\partial t} \mathbf{D} \right) = \nabla \cdot (\sigma \mathbf{E}) + \frac{\partial \rho}{\partial t} = 0 \]

\[\frac{\partial \rho}{\partial t} = -\nabla \cdot (\sigma \mathbf{E}) = -\nabla \sigma \cdot \mathbf{E} - \sigma \nabla \cdot \mathbf{E} \]

\[\frac{\partial \rho}{\partial t} = -\nabla \sigma \cdot \mathbf{E} - \frac{\sigma \rho}{\epsilon} \]
Governing Equations: Joule Heating

\[\nabla \cdot \left(\sigma \mathbf{E} + \frac{\partial}{\partial t} \mathbf{D} \right) = \nabla \cdot (\sigma \mathbf{E}) + \frac{\partial \rho}{\partial t} = 0 \]

\[\frac{\partial \rho}{\partial t} = -\nabla \cdot (\sigma \mathbf{E}) = -\nabla \sigma \cdot \mathbf{E} - \sigma \nabla \cdot \mathbf{E} \]

\[\frac{\partial \rho}{\partial t} = -\nabla \sigma \cdot \mathbf{E} - \frac{\sigma \rho}{\epsilon} \]

Not zero!