Conductivity Estimation of Breast Cancer Using COMSOL® Modeling of Microwave Scattering and Frechet Mean Estimate of Covariance

Elham Khosrhowshahli and Aleksandar Jeremic
Department of Electrical and Computer Engineering
McMaster University, Hamilton, ON, Canada
Introduction

- Rapidly growing.
- Mammography: discomfort, ionization, false negatives
- Microwave imaging is “safe” but uninvestigated
- Noise levels, accuracy, imaging timelines
COMSOL Model
COMSOL Model (Cont’d)

- Cancer – different conductivity/permittivity
- Scattering of microwave
- Model predicted vs. measured
- Estimate parameters
- Detect presence of scattering
- Decide: cancer/not
Antenna Positions
Signal Model

• H0: No signal, the measurement only noise

• H1: Nonlinear function, COMSOL built parametric version, with respect to position, size, properties of cancer
Frechet Mean

- Difference between two matrices can be measured using different distances
- Instead of arithmetic mean geometric mean can be used
- Ensures positive definite property for the covariance
- In correlated noise – almost always !!!!
Results
Detection
Conclusions

• Signal processing algorithms will provide key answers: noise levels, antenna powers, reliability, screening frequency, etc.

• More advanced techniques can provide significant improvements in imaging analysis