Simulation of a Tsang Suspension

E. Rawashdeh¹, A. Arevalo¹, D. Castro¹, I. G. Foulds², N. Dechev³

¹Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
²School of Engineering, Okanagan Campus, The University of British Columbia, Vancouver, BC, Canada
³University of Victoria, Victoria, BC, Canada

Abstract

This paper investigates the effects of design parameter variation on the mechanical performance of the out-of-plane assembly mechanism of the Tsang suspension. A variety of designs exploring the design space were fabricated using SU-8 as a structural material. We used the Structural Mechanics Module in the COMSOL Multiphysics® software to simulate the reaction forces of the design. COMSOL Multiphysics® will help us to choose the optimal design parameters of Tsang structures. Figure 1 shows a two dimensional layout of a generic Tsang suspension, which consist of two anchors connected by two identical springs joined by a plate which could potentially hold a transducer for MEMS applications. Figure 2 shows a simulated image of an assembled Tsang suspension. Figure 3 shows an SEM image of an SU-8 fabricated Tsang Suspension.
Reference

Figures used in the abstract

Figure 1: Layout of a Tsang suspension
Figure 2: Simulation of a Tsang suspension showing the direction of the applied boundary condition

Figure 3: SEM image of an assembled Tsang suspension