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AIms

0 investigate 3D fluid flow heterogeneity in packed beds of low aspect ratios and to compare the results with those from with 2D modelling

{ Abstract

Computer fluid dynamics (CFD) was used to investigate non-uniform structure flow distributions in packed bed reactors of low aspect ratios. Detailed knowledge of flow dynamics in terms of local structure of the packed bed, pressure
drops and interstitial flow distributions was examined. The discrete element method was used to generate various packing configurations. The porosity profiles from the CFD simulation results were in a good agreement with the semi-
analytical models, especially, in the vicinity of the wall. Similar oscillation trends with damping profiles towards the centre of the packed beds were observed. The discrepancies in regions towards the centre would be caused by the loose
structure of the generated packing. The simulation results were validated by pressure drop measurements. Both experimental and simulation results fitted well Reichelt and Zhavoronkov models at high Reynolds numbers and these results
clearly demonstrated that the generated packing exhibited pressure drops which were close to relevant models at low aspect ratios allowing further investigations of mass transfer and chemical reactions. Flow heterogeneity was
investigated by radial distribution of the velocity. At high aspect ratios of packed bed, the velocity profile had a thin peak near the wall and a dumped profile towards the centre.
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Results

Pressure drops by simulation and established models
(Carman, Ergun, Zhavoronkov and Reichelt)
Velocity/pressure drops profiles

Momentum balance

2D modeling (two missing data : porosity and/or porosity)
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Modelling of momentum, heat and mass balances in packed bed reactor L ocal deactivation results
(Pt/Alumina catalyst deactivation in CO oxidation)
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