Simulation of GMR in granular C@Co nanoparticles in agarose

P. Hainke, D. Kappe, A. Hütten
The Giant Magnetoresistance (GMR) effect

- Electrical resistance dependents on switching on and off an outer magnetic field
- Spin dependent
Spin channel currents

- Spin channel currents act like in a parallel circuit
- Therefore they can be described by variegating the conductivity of the particles

\[R_{\uparrow} = \text{High resistance} \quad R_{\downarrow} = \text{Low resistance} \]
GMR in granular gels

- Many different sizes of the magnetic particles
- No high ordered structure

But:
- Particle chains in antiferromagnetic order to the next neighbour
Use of the Java API

Why Java?

• Automation of generating many particles
• Fast and flexible variation of space and size distribution
Flexible geometry

Particles are variable in space and size distribution
Magnetic field via electric conductivity

Parametric sweep for the 3 conductivities depending on the magnetic field

a) High and b) low conductivity in a magnetic field in contrast to c) the alternating conductivity without field
Results for a single chain

Can short chains show the effects of the in fact much longer chains?

Yes!
Because the GMR in converges very fast

So no need of simulation of many elements
Other geometries

Triangle 3 chains

Triangle 6 chains

Rhombus 4 chains
Comparison

All geometries show similar curves
Conclusion

• Flexible and fast generation of many elements, variable in size and space distribution
• For simulation just short chains needed, because ΔR converges fast
• All geometries show similar curves

➢ Simulation of variations in particle size and disordered space distribution

Thank you for your interest!