

COMSOL CONFERENCE 2014 CAMBRIDGE

3D Modeling of an All-Superconducting Synchronous Electric Machine by the Finite Element Method

Di Hu, Mark D. Ainslie, Jin Zou, David A. Cardwell

Bulk Superconductivity Group, Department of Engineering

All-Superconducting Synchronous Electrical Machines

- All-superconducting synchronous electrical machine:
- Superconducting stator using High Temperature Superconducting (HTS) Coils
- + Superconducting rotor (also HTS Coils)
- Advantages:

Higher current density \rightarrow increased power density \rightarrow reduced size & weight

Lower wire resistance \rightarrow lower losses & higher efficiency / better performance

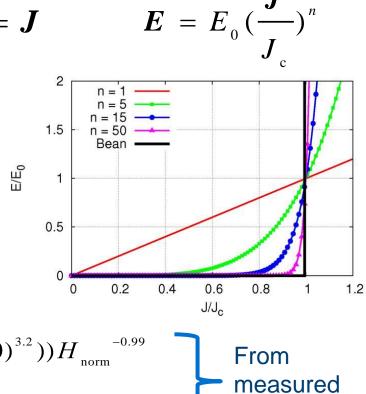
AC Loss in Superconducting Coils

- Finite, hysteretic AC loss appears for time-varying current and/or magnetic field
- Stator experiences alternating current / time-varying magnetic field → AC loss exists.
- Rotor experiences DC current. AC loss does not exist.
- AC loss amplified at low temperatures, e.g., P_{actual} ≈ 20 P_{77 K}
- Investigating methods to calculate and decrease the AC losses in the HTS stator of all-superconducting machine are important.

Governing Equations in COMSOL Multiphysics

• Maxwell's equations (H formulation) + non-linear *E-J* Power law

$$\nabla \times \boldsymbol{E} + \mu_0 \mu_r \frac{\mathrm{d}\boldsymbol{H}}{\mathrm{d}t} = 0 \qquad \nabla \times \boldsymbol{H} = \boldsymbol{J} \qquad \boldsymbol{E} = E_0 \left(\frac{\boldsymbol{J}}{\boldsymbol{J}_c}\right)^n$$


• AC loss calculation:

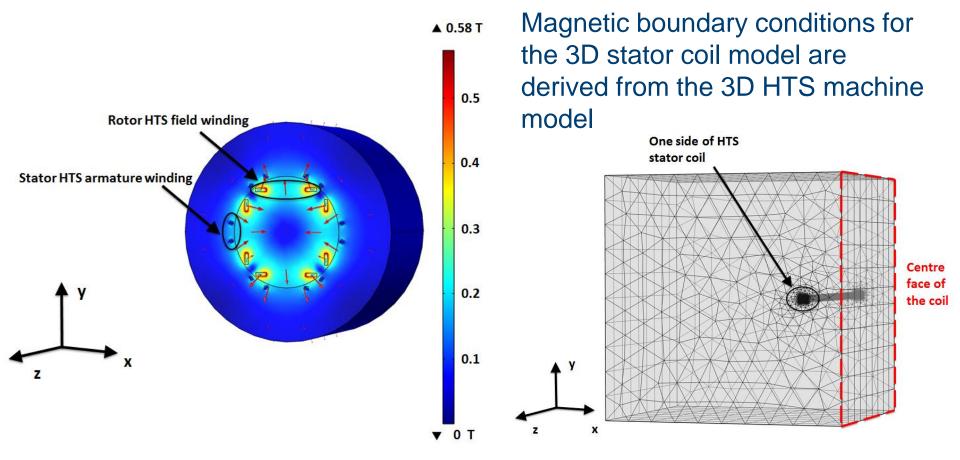
$$Q_{\rm ac} = \frac{1}{V} \int_0^T \mathrm{d}t \int_0^V \boldsymbol{E} \cdot \boldsymbol{J} \mathrm{d}v$$

• Ferromagnetic material properties:

$$\mu_{\rm r}(H_{\rm norm}) = 1 + 120000(1 - \exp(-(H_{\rm norm}/70)^{3.2}))H_{\rm r}$$

 $Q_{\text{ferro}}(B_{\text{max}}) = 171.2B_{\text{max}}^{1.344} \quad 0.1 \le B_{\text{max}} \le 1.53$

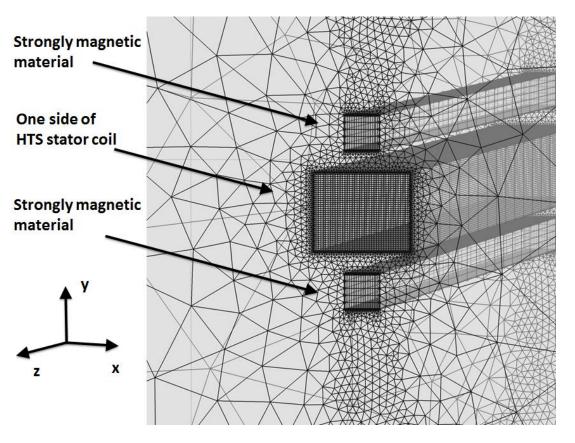
data



Motor Parameters

PARAMETERS	SYMBOL	VALUE
Pole-pairs	р	2
Phase number	m	3
Rotor radius	R _r	130 mm
Field winding coil turns (rotor)	N _r	300
Field winding coil thickness (rotor)	h _r	9 mm
Field winding coil width (rotor)	W _r	30 mm
Distance between field coil sides (rotor)	W _r	106 mm
Armature winding position radius	R _s	153 mm
Armature winding coil turns (stator)	N _s	110
Armature winding coil thickness (Stator)	h _s	9 mm
Armature winding coil width (Stator)	W _s	11 mm
HTS wire critical current (77 K, self-field)	I _c	100 A
Operating temperature	T _{op}	77 K
Motor length	L	300 mm

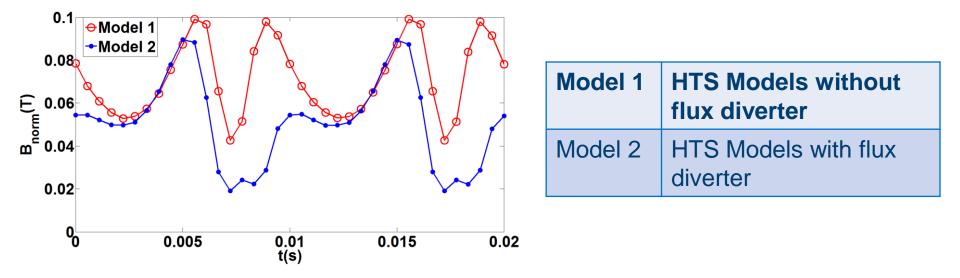
3D Machine and Stator Coil Model



3D HTS machine model

3D stator coil model

Use of Flux Diverter – AC Loss Reduction



- Magnetic materials are added at the top and bottom of the coil
- The width of the flux diverter is shorter than the width of the coil →

Avoids a relatively higher local magnetic field at the innermost turn of the coil, which decrease the critical current of the coil

Simulation Results

Magnetic field, B_{norm} , seen by the stator coil as the rotor rotates from its initial position through 180° (half a revolution)

Conclusion: flux diverters can help decrease the magnitude of the average external magnetic field seen by the stator coil

AC Loss Comparison With & Without Flux Diverters

	MODEL 1 No diverter	MODEL 2 Diverter
Magnetization loss	296 J/cycle	276 J/cycle
Transport loss	765 J/cycle	720 J/cycle
Ferromagnetic material loss	0 J/cycle	3.8 ×10 ⁻³ J/cycle

Conclusions:

- Flux diverters can help decrease both the magnetization loss and transport losses
- Although the ferromagnetic material has hysteresis loss, this is small & can be ignored compared with the AC loss in the HTS material

Acknowledgements

- The work of Di Hu and Jin Zou is supported by Churchill College, the China Scholarship Council and the Cambridge Commonwealth, European and International Trust.
- The work of Mark Ainslie is supported by a Royal Academy of Engineering Research Fellowship.

Thank you for your attention

