AN OVERVIEW OF IMPELLERS, VELOCITY PROFILES AND REACTOR DESIGN

Instructor: Gurmeet Singh (Department Manager of Polymer and Processing Department IOCL R&D center, Faridabad)


Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
INTRODUCTION

It is one of the most commonly used devices in the production industry.

Mixing is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity.

AIM

- To find **Optimize** parameters for all process conditions to attain homogeneity in the batch reactor.
- Pilot plant experiments

- It takes a long time to build a model, perform experiments.
- In some cases it is difficult to obtain experimental information.
MODELING

Chemical Engineering Module (3D)
- Incompressible Navier-Stokes
- Moving Mesh (ALE)

Geometry
- Cylinder of radius 6e-2 m and height 0.18 m
- Impeller radius 6 mm and impeller height 0.15m
- Blocks of dimensions 0.03 x 0.0025 x 0.015

Bottom
- Flat
- Ellipsoid bottom with x=0.06, y=0.06, z=0.015

Boundary Conditions
- No Slip at walls
- Symmetric at top

Angular velocity in counter clockwise direction

Parameters:

<table>
<thead>
<tr>
<th>rpm</th>
<th>Revolution speed</th>
<th>20,50,100</th>
<th>1/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>cta</td>
<td>Viscosity</td>
<td>0.01</td>
<td>Kg/(m·s)</td>
</tr>
<tr>
<td>rho</td>
<td>Density</td>
<td>1000</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>
**GOVERNING EQUATIONS**

- The flow is described by the Navier-Stokes equations having the local changes term, the convective term, stress term, and the body forces term.

\[
\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u = - \nabla p + \eta \left( \nabla u + (\nabla u)^T \right) + F
\]

\[\ldots (1)\]

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0
\]

\[\ldots (2)\]

- For turbulence modeling, RANS model was used, Reynolds’ stress term was calculated by using two equation turbulence model (k-\( \varepsilon \) models).
# TYPES OF IMPELLERS

<table>
<thead>
<tr>
<th>4 Bladed 45 pitch Impeller</th>
<th>3 bladed Impeller with Baffle</th>
<th>Pitched Blade Impeller with Baffle</th>
<th>T-Shaped Impeller</th>
</tr>
</thead>
</table>

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
Figure 2: **Left:** Reactor geometry & **Right:** Reactor with streamline flows, 3D Arrows & isosurface plot

- The above figure shows the flow pattern of ethanol with 4 bladed 45° pitched blade impeller
- Same pattern was observed when carried the experiment with same reactor dimensions and impeller dimensions in lab
RESULTS - Velocity field in case of 4-bladed turbine impeller

Figure 3: Slice plot of reactor with a 4-bladed impeller revolving with 100rpm

- The above figure shows, that the velocity near the impeller blades is higher, than near the wall
Figure 4: Streamline plots of vorticity in reactor with and without baffle for 4-bladed turbine impeller

- The streamline plot shows that the reactor is well mixed.
- Baffles can be used to achieve adequate mixing in stirred vessel.
- Hence, vorticity can be decreased by introducing baffles when pitch is not presented for 4-bladed.

### RESULTS - Vorticity in reactor with and without baffle

<table>
<thead>
<tr>
<th>Impeller</th>
<th>Without baffle</th>
<th>With Baffle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 bladed</td>
<td>385</td>
<td>238</td>
</tr>
<tr>
<td>4 bladed</td>
<td>513</td>
<td>186</td>
</tr>
<tr>
<td>4 bladed 45 pitched</td>
<td>159</td>
<td>390</td>
</tr>
<tr>
<td>3 bladed 45 pitched</td>
<td>342</td>
<td>354</td>
</tr>
</tbody>
</table>

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore.
RESULTS

Effect of different impeller geometry on velocity profile

- The maximum velocity of fluid in stirred vessel increases with rotational speed.
- The maximum velocity for 4-bladed impeller is greater among three bladed impeller, 2-bladed pitched blade impeller, 4-bladed impeller, 4 laded pitched blade impeller and disc impeller at higher revolution speed.

**Figure 5:** Velocity Vs rpm’s for different impeller geometry.
RESULTS - Effect of baffles on velocity profile

- Initially the velocity of impellers with baffles is less than that of without baffles and the difference increases with increase in rotational speed.
- Baffles can be used to achieve a adequate mixing.

**Figure 6**: Velocity Vs rpm for 3-bladed and 4-bladed impellers with and without baffles.
RESULTS - Effect of different reactor’s dimensions

- The velocity of 4-bladed impeller is optimum at $L/D = 1$ for higher revolution speed.

Figure 7: Velocity Vs rpm for different reactor geometry
### RESULTS - Effect of different impeller to reactor’s diameter (di/D)

- The velocity for 4-bladed impeller is optimum at $\text{di}/\text{D} = 0.6$ and $\text{di}/\text{D} = 0.7$ for lower revolution speed and higher revolution speed respectively.

**Figure 8**: Velocity Vs rpm for different di/D ratio’s

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
The fluid properties like density and viscosity also affect the rate of mixing.

The average velocity decreases as viscosity of fluid increases.

It's evident that velocity for hexane and TiCl4 (less viscous fluid) is greater than the water and high viscous fluid.

**Figure 9:** Velocity Vs rpm for different fluids

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
CONCLUSION

- The effect of reactor geometry, impeller configuration, rotation speed, baffle and fluid properties (density and viscosity) on the mixing phenomenon is understood and can be used for in industries for designing a reactor.

SCOPE OF WORK

- In future, one can do the same simulation for higher revolution speeds, multi-impeller systems and continuous systems.
REFERENCES


- Butterworth’s, Mixing in the Process Industries
THANK YOU