Uncertainty of FEM Solutions Using a Nonlinear Least Squares and Design of Experiments Approach

J. T. Fong¹, N. A. Heckert¹, J. J. Filliben¹, P. V. Marcal², R. Rainsberger³

¹National Institute of Standards and Technology, Gaithersburg, MD, USA
²MPACT Corp., Oak Park, CA, USA
³XYZ Scientific Applications, Inc., Livermore, CA, USA

Abstract

Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to illustrate both approaches are given using the COMSOL RF Module (in an application of a MRI coil design) and the Structural Mechanics Module (in a stress analysis of a wrench). Significance and limitations of both methods are presented and discussed.

Reference


Figures used in the abstract

Figure 1: COMSOL results of a stress analysis of a wrench.