
Finite Element Modelling of Eddy
Current Probes for CANDU® Fuel Channel Inspection

INTRODUCTION/MOTIVATION

CANDU® REACTOR FUEL CHANNEL
• CANDU® reactor fuel bundles are contained within 

Pressure Tube (PT), which also carries heat transport 
coolant as shown in Figure 1 [1];

• A gas-filled Calandria Tube (CT) surrounds the PT and 
thermally isolates it from the moderator surrounding 
the fuel channels [1]. 

• The hot PT (~300C) is separated from the cool CT 
(~50C) by four annulus spacers to prevent contact,  
which could result in hydride blistering of the PT [1]

• Hydride Blistering lowers the fracture tolerance of 
the PT, which may lead to cracking of the PT;

• Monitoring the PT-CT gap is a nuclear safety 
requirement and is done using Eddy Current (EC) 
technology.

• Figure 1: A schematic of a CANDU® fuel channel with the EC 
probe.

OBJECTIVES 
The goals of this project are to:   

• Develop COMSOL® FEM models to simulate the probe 
response for eddy current probes for future validation 
by experimental measurements;

• Use the FEM models to investigate probe operation 
under normal test conditions, comparing the response  
against nuclear reactor inspection specifications;

EDDY CURRENT PROBE
• A picture of the physical EC probe used in this study 

is shown below in Figure 2.  
• An eddy current instrument excites the drive coil of 

the coil pair at three frequencies.
• The pick-up coil response is filtered to isolate the 

response from each of the three excitation 
frequencies;

• Finite Element Method (FEM) used to model probe 
response under various in-reactor inspection 
conditions can be used to support activities leading 
to qualification of the inspection system, which is a 
nuclear regulator requirement [5].

Figure 2: A photograph of the experimental EC probe.

RESULTS

• FEM model results (see Figure 5) always show that 
the ECs are localized above the drive coil, thereby 
reducing the effect of geometric curvature in the 
model;

• As shown in Figure 6, the impedance plane display 
of the PT-CT gap response was calculated for the 
planar approximation, the growing CT 
approximation and real geometry of the fuel 
channel when the probe was operated at 4 kHz;

• It was found that all three models yield a similar 
shape response, however:

Figure 5: The PT eddy current distribution from a conventional EC 
probe. Colour axis given in units of A/m2.

Figure 6: Impedance plane display of PT-CT gap response (0-20 mm) 
for the planar geometry approximation, the growing CT 
approximation and real geometry of the fuel channel as predicted by 
COMSOL®. 

CONCLUSIONS
• The effect of fuel channel curvature must be taken 

into account as the flat-plate model (infinite 
curvature) does not predict the phase of the PT-CT 
gap accurately;

• The effect of curvature however is smallest at small 
gaps (<5.5 mm)
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COMSOL® MULTIPHYSICS 

• As shown in Figure 3, three 3D COMSOL® models 
(COMSOL® version 5.1) were made: a planar-
geometry approximation, a growing CT approximation 
[2,3] and one model with the actual fuel channel 
dimensions;

• The Magnetic Fields (mf) physics node in the AC/DC 
module was used in conjunction with a Frequency 
Domain study;

• The coils were cut into fifths and connected to a pull 
up or pull down resistor using the Electrical Circuit 
interface. By turning on the right “fifth coils” , one can 
develop a liftoff profile;

• A stack of CTs were placed about the PT. Turning the 
material resistivity to 10 S/m or the correct resistivity 
developed the PT-CT gap profile;

• The coils were modelled as multi-turn coils, with the 
drive coil was connected to a 10 V AC-source;

• The pickup coils were constrained to be in an open 
circuit configuration.

Figure 3: The flat-plate and growing CT COMSOL® models to 
replicate analytic solutions (top and middle) and the real 

geometry model (bottom). 

Figure 4: A circuit diagram showing how the “fifth-coils” of the 
drive coils are connected to a pull-up or pull-down resistor.

o The flat-plate model  (infinite curvature) 
does not predict the phase of the PT-CT 
gap profile accurately;

o For small PT-CT Gaps (< 5.5 mm) the 
growing CT approximation agrees well 
with the real geometry model but 
deviates at larger gaps.
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