COMSOL CONFERENCE

COMSOL Conference 2015 Boston

Session: Computational Fluid Dynamics

Hydrodynamic Modeling of a Rotating Cone Pump Using COMSOL Multiphysics ${ }^{\text {TM }}$

Department of Chemical and Natural Gas Engineering
Texas A \& M University-Kingsville Kingsville-TX 78363-8202 USA
*Patrick.Mills@tamuk.edu

Comparison of Several Different Pump Types

Fig. 1 Common centrifugal pump design[1]

Rotating Cone Pump

Viscous Micro Pumps

Fig. 2 Eccentric cylinder pump[2]

- Reynolds number > 1000
- High fluid throughput
- High pump head (meters)
- Reynolds number 10-100
- High fluid throughput
- Low pump head (millimeters)
- Reynolds number < 10
- Moderate fluid throughput
- Low pump head (millimeters)

Model Equations: Continuity, Momentum Transport and Turbulence Model

Turbulence Model

k- ε Model Equations

- Turbulent kinetic energy, k , is given by:

$$
\rho \frac{\partial k}{\partial t}+\rho(\boldsymbol{u} \cdot \nabla) k=\nabla \cdot\left[\left(\mu+\frac{\mu_{T}}{\sigma_{k}}\right) \nabla k\right]+P_{k}-\rho \epsilon
$$

- Turbulent dissipation, ε, is given by:

$$
\rho \frac{\partial \epsilon}{\partial t}+\rho(\boldsymbol{u} \cdot \nabla) \epsilon=\nabla \cdot\left[\left(\mu+\frac{\mu_{T}}{\sigma_{\epsilon}}\right) \nabla \epsilon\right]+C_{c 1} \frac{\epsilon}{k} P_{k}-C_{c 2} \rho \frac{\epsilon^{2}}{k}
$$

- Turbulent viscosity is modelled by:

$$
\mu_{T}=\rho C_{\mu} \frac{k^{2}}{\epsilon}
$$

- Production of turbulent kinetic energy defined as:

$$
P_{k}=\mu_{T}\left[\nabla \boldsymbol{u}:\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right]-\frac{2}{3} \rho k \nabla \cdot \boldsymbol{u}\right.
$$

Equation of Continuity

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0
$$

Momentum Transport Equation

$$
\begin{gathered}
\rho \frac{\partial u}{\partial t}+\rho(u \cdot \nabla) u= \\
\nabla \cdot\left[-p I+\left(\mu+\mu_{T}\right)\left(\nabla u+(\nabla u)^{T}\right)-\frac{2}{3} \rho k I\right]+F
\end{gathered}
$$

Equations for 1-D Momentum Transport Model

COMSOL Model Setup

COMSOL Model Description

Assumed Geometry

Parameter	Value		Units
	Min	Max	
H	10	35	mm
$\mathrm{~K}=\mathrm{R}_{\mathrm{i}} / \mathrm{R}_{0}$	0.7	0.9	-
R_{0}	15	15	mm
P_{in}	1	1	atm
Ω	3	10	$\mathrm{rpm} \cdot \mathbf{1 0}^{-3}$
$\boldsymbol{\alpha}$	10	45	deg

H - Height of the cone
κ - Ratio of inner to outer cylinder radii
$\mathrm{P}_{\text {in }}$ - Inlet pressure
Ω - Angular velocity
α-Semi-angle of the cone

Meshing

Tetrahedral Mesh
(48,000 elements)

Mesh Independent Solution

- Tetrahedral mesh with boundary layers has been used
- Number of elements ~ 48000
- Average quality of the mesh -0.75

Velocity and Pressure Profiles: Effect of Semi angle

Velocity and pressure profiles for a semi angle of 45°, $\mathrm{Q}=1 \mathrm{ml} / \mathrm{s}$

Velocity and pressure profiles for a semi angle of 12°, $\mathrm{Q}=1 \mathrm{ml} / \mathrm{s}$

The pressure profiles show that the hydraulic head of the pump is a weak function of the cone semi angle and height of the rotating cone.

Pump Head vs Flow Rate: Effect of Rotational Speed

Head Curve for a Semi Angle of $\pi / 4$

- Outlet pressure decreases almost linearly with increasing volumetric flowrate.
- Pump head is proportional to the square of rotational speed.
- Pump outlet pressure does not exceed 135 Pa even for highest values of angular velocity.

Pump Head vs Flow Rate: Approximate Solution vs CFD Solution

Comparison of Head Curve Acquired from Approximation and CFD Results

Approximate solution for rotating cone pump problem is available in open literature. (Bird et al., 2007)

Key assumptions

- Laminar flow
- Curvature and entrance effects are neglected.
$w=\frac{4 \pi B^{3} \rho \sin \beta}{3 \mu \ln \left(L_{2} / L_{1}\right)}\left[\left(p_{1}-p_{2}\right)+\left(\frac{1}{8} \rho \Omega^{2} \sin ^{2} \beta\right) \cdot\left(L_{2}^{2}-L_{1}^{2}\right)\right]$
where
L_{1}, L_{2} are heights corresponding to pressures $p_{1} \& p_{2}$ respectively.

Pump Head vs Flow Rate: Effect of Fluid Density and Viscosity

Comparison of head curve for water and diethyl ether

Fluid	Density, $\mathbf{k g} / \mathbf{m}^{3}$	Viscosity, $\mathbf{c P}$
Water	999.66	1.01
Diethyl ether	713.58	0.24

- Rotating pump head increases with increasing viscosity and density.
- Rotating pump head behavior follows the same trend as that for a centrifugal pump.

COMSOL Application for Rotating Cone Pump

Conclusions

- The rotating cone pump is a simple design compared to other pump configurations that has applications where a low pump head is sufficient, such as in microprocess systems.
- Analysis of the rotating cone pump performance can be facilitated by using the COMSOL Multiphysics CFD Module.
- The CFD model predicts the correct trends in pump head performance for various model parameters.
- The approximate formula, which is based upon a 1-D fluid mechanics model, over predicts the pump head performance by about a factor of 2.
- Optimization of the cone pump design, which might include modification
 to the cone head surface, e.g., addition of spiral fins, would be facilitated by COMSOL CFD module simulations vs using empirical approaches.

Thank you for your attention

