Modeling Dielectric Heating: A First Principles Approach

> Roger W. Pryor, Ph.D. CEO Pryor Knowledge Systems

Introduction

What are the Two Types of Electromagnetic Heating?

What are the Two Types of Electromagnetic Heating?

1. Joule Heating

What are the Two Types of Electromagnetic Heating?

1. Joule Heating

2. Dielectric Heating

How are the Two Types of Electromagnetic Heating Different?

How are the Two Types of Electromagnetic Heating Different?

1. Joule Heating

Based on Ohm's Law

How are the Two Types of Electromagnetic Heating Different?

1. Joule Heating

Based on Ohm's LawPower (Watts/second)Applied over time == I(current) * V(voltage)Joule's First Law $= I^2(current^2) * R(resistance)$

 $=\frac{V^2(\text{voltage}^2)}{R(\text{resistance})}$

How are the Two Types of Electromagnetic Heating Different?

1. Joule Heating

Based on Ohm's LawMechanism: Charged Free Carrier FlowApplied over time =Electrons, Electrons and/or IonsJoule's First LawElectrons and for Ions

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

First discovered and patented at Bell Telephone Laboratories in 1937 by Joseph G. Chaffee

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

Dielectric Heating typically occurs in the absence of free carriers in nominally non-conductive materials (dielectrics).

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

Dielectric Heating occurs as a result of the relative motion of bound electrons, ions, atoms, and molecules, in situ.

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

During electromagnetic excitation, the relative motion (vibration) of the bound electrons, ions, atoms, and molecules, in situ, couple to the bulk of the material. These vibrations are known as heat.

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism

 ε_0 = permittivity of Free Space c_0 = speed of light μ_0 = permeability of Free Space Different materials have a different relative permittivity (dielectric constant). The permittivity of Free Space is:

$$\varepsilon_0 = \frac{1}{c_0 \mu_0} = 8.85419 \, x \, 10^{-12} [F/m]$$

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism $\varepsilon = \varepsilon_r \varepsilon_0$ where : $\varepsilon_r = \text{relative permittivity}$ $\varepsilon_0 = \text{permittivity of Free Space}$

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating Mechanism For very complicated materials with phase delays and energy losses $\hat{\varepsilon} = \varepsilon'(\omega) + i\varepsilon''(\omega)$ where: $\varepsilon'(\omega) = \text{real part}$ $\varepsilon''(\omega) = \text{imaginary part}$ $\omega = 2 * \pi * f_0 \text{ and } f_0 = \text{frequency}$

How are the Two Types of Electromagnetic Heating Different?

2. Dielectric Heating

Non-Ohmic Heating The loss equation is: *Mechanism*

For very complicated materials with phase delays

and energy losses

$$Q_d = 2 * \pi * f_0 * \varepsilon'' * \varepsilon_0 * \left(\frac{V_{in}}{thickness} \right)$$

T7

where :
$$f_0$$
 = frequency

Dielectric Heating Model Materials

Dielectric Heating Model Materials

whey gel = water + impurities (~10%) formed into a gelatinous mass

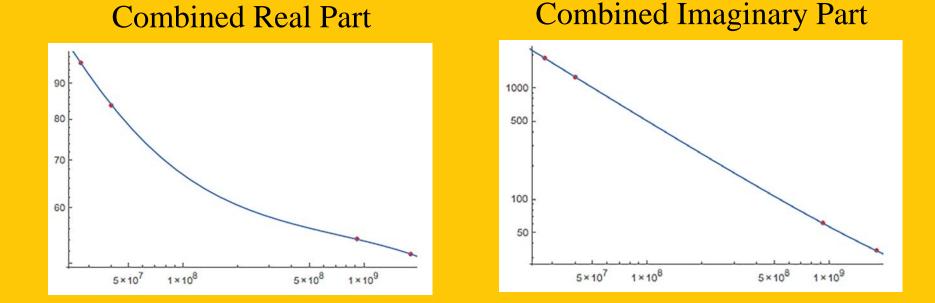
Dielectric Heating Model Materials

whey gel = water + impurities (~10%) formed into a gelatinous mass

Frequency (measured)	Real Part (measured)	Imaginary Part (measured)
27 MHz	96.30	1879.15
40 MHz	83.95	1263.20
915 MHz	54.20	61.30
1800 MHz	51.70	34.57

After: Yifen Wang, et.al., J. Food Eng., 57 (2003), pp. 257-268

Dielectric Heating Model Materials

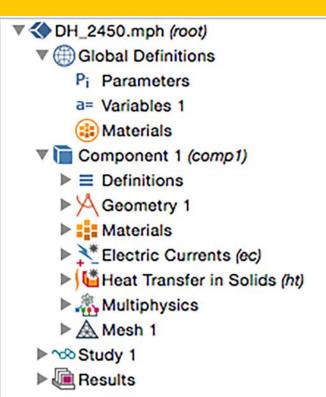

Real Part Fit Equation

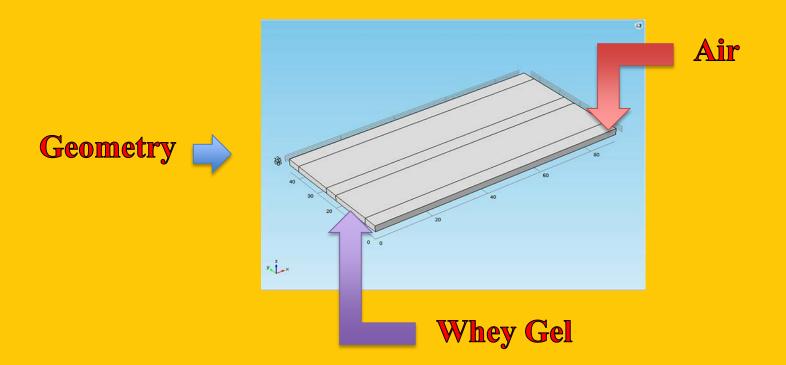
Imaginary Part Fit Equation

$$\varepsilon' = 54.6919 - 2.05493 \times 10^{-9} * f_0$$

+1.27475 \times 10^9 * f_0^{-1} - 4.04542 \times 10^{15} * f_0^{-2}
f_0 = frequency

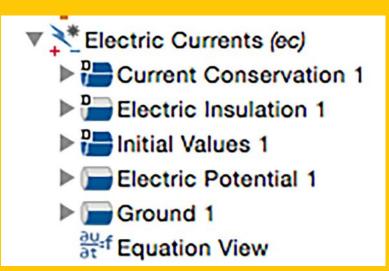
 $\varepsilon'' = 6.88131 + 1.59761 \times 10^{-10} * f_0$ + 4.96322 \times 10^{10} * f_0^{-1} + 2.48106 \times 10^{16} * f_0^{-2}


Dielectric Heating Model Materials

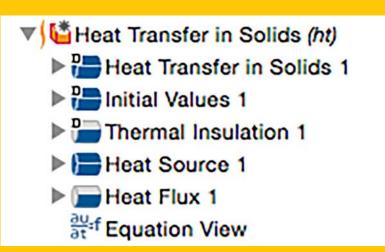

Data and Fit Plots

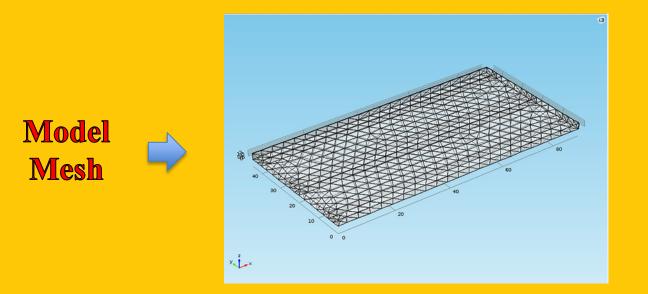
Dielectric Heating: COMSOL Multiphysics Model

Model Builder Tree

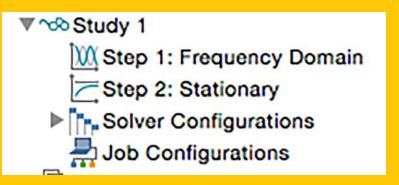


Dielectric Heating: COMSOL Multiphysics Model

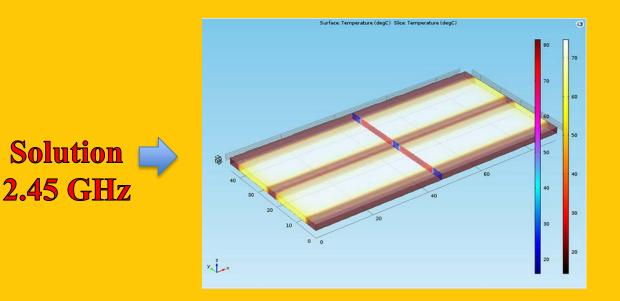

Dielectric Heating: COMSOL Multiphysics Model



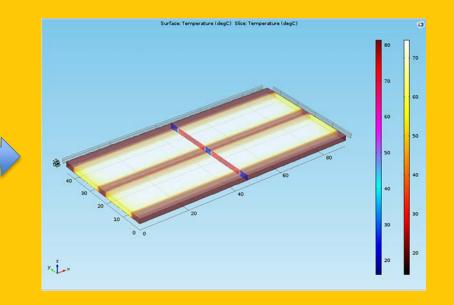
Dielectric Heating: COMSOL Multiphysics Model



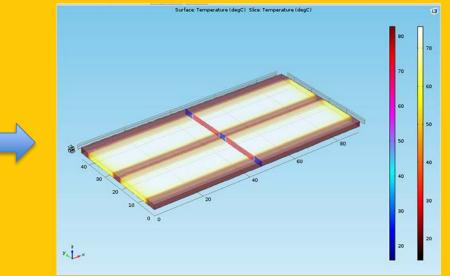
Dielectric Heating: Solving the COMSOL Multiphysics Model



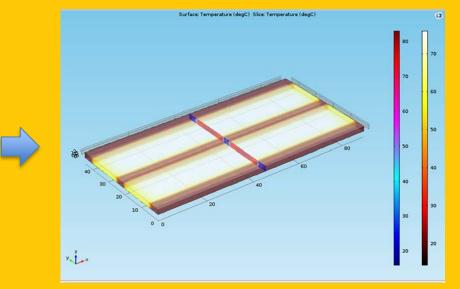
Dielectric Heating: Solving the COMSOL Multiphysics Model



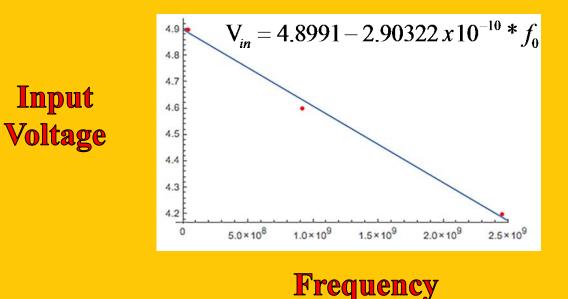
Dielectric Heating: Solutions to the COMSOL Multiphysics Model



Dielectric Heating: Solutions to the COMSOL Multiphysics Model



Dielectric Heating: Solutions to the COMSOL Multiphysics Model


Dielectric Heating: Solutions to the COMSOL Multiphysics Model

Solution 27 MHz

Dielectric Heating: Solutions to the COMSOL Multiphysics Model

Dielectric Heating: Conclusions

The Heating Efficiency Increases As The Frequency Increases

Thank You!