Virtual functional product development of a micro steam methane reformer Technische Universität Darmstadt Dipl.-Ing. T.J. Kazdal, Prof. Dr.-Ing. Hampe

TECHNISCHE UNIVERSITÄT DARMSTADT

Air cooled exothermal micro reactor

Situation in Germany

Price of 1 kWh

Steam Methane Reformer Fuel Cell Process

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 4

Process simulation with Aspen Plus for a 1kWh_{el} µ-SMR-FC plant

COMSOL model library: Steam reformer

COMSOL (2010): Chemical Reaction Engineering Module Model Library. Steam Reformer (models.chem.steam_reformer).

Micro Structured Catalytic Reactors (MSR)

TECHNISCHE UNIVERSITÄT DARMSTADT

heat & mass transport:

- transfer capacities increase by several magnitudes
- homogenous ignition can be avoided
- less catalyst is needed, due to increased catalyst utilisation
- no runaway, hot spot, cold spot formation

S. Cruz, O. Sanz, R. Poyato, O.H. Laguna, F.J. Echave, L.C. Almeida, M.A. Centeno, G. Arzamendi, L.M. Gandia, E.F. Souza-Aguiar, M. Montes, J.A. Odriozola, Design and testing of a microchannel reactor for the PROX reaction, Chemical Engineering Journal 167 (2011) 634–642.

Catalytic combustion

- Stability over wide concentration ranges
- High selectivity \rightarrow No NO_x formation
- lower temperature
- total conversion

Kinetic data for the heterogeneous oxidation of H₂ and CH₄

Song, X.; Williams, W. R.; Schmidt, L. D.; Aris, R. (1991): Ignition and extinction of homogeneous-heterogeneous combustion: CH4 and C3H8 oxidation on PT.

In: Symposium (International) on Combustion 23 (1), S. 1129–1137. DOI: 10.1016/S0082-0784(06)80372-3.

Schefer, R. W. (1982):Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: II. Numerical model.

In: Combustion and Flame 45, S. 171-190. DOI: 10.1016/0010-2180(82)90043-8.

Catalytic combustion of H₂ and CH₄ The reaction engineering module 1D

Calculation domains 2D axisymmetric time dependant model

Interim results

Experimental design

2D axisymmetric boundary conditions influence of the inlet and outlet

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 13

2D axisymmetric boundary conditions influence of the cooling jacket

Time=9.6 s (m/s)

COMSOL aided experimental design

TECHNISCHE UNIVERSITÄT DARMSTADT

Final design

12 Thermocouples 2 Mass flow controller Coolant: 20 – 90°C Heater: 0 – 350W Temperature: 50 – 900°C Variable gap size $< 1000 \mu m$ exhaust gas analysis by gas chromatography

Reactor validation with heat cartridge (15, 24, 33, 42W)

Transition from heater to H₂-Air reaction

How to obtain an unsteady line as a simulation result?

Solution:

Import the actual volume flow from the experiment as a boundary condition in COMSOL:

Conclusion & outlook

Powerful development tool for chemical engineering.

• NASA polynomials | CHEMKIN $\rightarrow c_p(T)$, $\Delta H_R(T)$, Transport properties

Virtual functional product development due to multiphysics

• Prediction of the dynamic behaviour of a chemical reactor

Superior pre and post processing

- Import time dependant boundary conditions
- Evaluation of 'miscarried' experiments

Catalyst deposition method needs revision:

