Modeling of Non-Isothermal Reacting Flow in Fluidized Bed Reactors

Vít Orava1,2, Ondřej Souček2, Peter Cendula1

1Institute of Computational Physics, ZHAW, Switzerland
2Faculty of Mathematics and Physics, CUNI, Czech Republic

October 15, 2015

What is a fluidized bed reactor?

Bubble column reactor:
- Liquid \rightleftharpoons Gas
- Dissolution of the gas into the liquid.

Packed bed reactor:
- Solid \rightleftharpoons Gas
- Heterogeneous catalysis in porous immobilized macro-structure

Fluidized bed reactor:
- Liquid \rightleftharpoons Gas
- Heterogeneous catalysis on moving micro-structure.
The application: Hydrogen generator coupled to PEM FC

Hydrogen (gas) is produced by endothermal decarboxylation of formic acid (liquid) - in presence of a (solid) catalyst.

Purpose: Using formic acid as a fuel to generate $1 - 5\, kW$.

Typical usage: back-up devices, i.e. start-up in a few minutes, works for many hours, comparable with diesel aggregate.

Figure: Scheme of the HyForm system.
Constituents and phase transitions within the reactor

- We treat the system, contained in a fixed control volume, as a mixture of 7 constituents:

 \[FA(l), FA(g), CO_2(d), CO_2(g), H_2(d), H_2(g), Cat(s). \]

 Subscripts "(l), (g), (s)" denote liquid, gas, solid phase and "(d)" refers to dissolved phase.

- Along the decarboxylation of formic acid

 \[FA(l) \xrightarrow{32.9kJ} H_2(d) + CO_2(d) \]

 we consider four phase transitions (evaporation) mechanisms

 \[FA(l) \xrightarrow{23.1kJ} FA(g) \]

 \[H_2(d) \rightarrow H_2(g) \]

 \[CO_2(d) \rightarrow CO_2(g). \]

 Other transformation processes are assumed to be negligible.
Distinguishing partial densities and momenta, we consider one common temperature field - so called Class II model.

There is a natural division of the constituent within two groups forming, so called, pseudo phases where:

(i) **Gaseous phase:** denoted by \((\cdot)_g \) - consists of \(CO_2(g) \), \(H_2(g) \) and \(FA(g) \) which share one common velocity field \(\mathbf{u}_g \) and \(\Phi_g := \Phi_{CO_2(g)} = \Phi_{H_2(g)} = \Phi_{FA(g)} \).

(ii) **Liquid phase:** denoted by \((\cdot)_l \) - consists of \(FA(l) \) and dissolved \(CO_2(d) \), \(H_2(d) \) which share one common velocity field \(\mathbf{u}_l \) and \(\Phi_l \approx \Phi_{FA} \).

(iii) **Solid phase:** denoted by \((\cdot)_s \) - consists of \(Cat(s) \).

(ii)* **Suspension:** denoted by \((\cdot)_{ls} \) - mixture of liquid and solid where \(\Phi_{ls} := \Phi_l + \Phi_s \).
Mixture theory
- handling mass concentrations c_i
- no interfacial phenomena
- usually CPU friendly

Two-phase theory
- handling volume fractions Φ_i
- tracking of interfaces
- **CPU-costly**, steady solution (?!)

Our approach: Multi-phase (scale-up averaging) theory
- Geometry of interfaces follow the mixture approach.
- Interfacial phenomena are caught in the model.

\[
\partial_t (\Phi_{ls} \rho^{true}_{ls}) + \text{div} \left(\Phi_{ls} \rho^{true}_{ls} \mathbf{u}_{ls} \right) = -\dot{m}_g \\
\partial_t (\Phi_g \rho^{true}_g) + \text{div} \left(\Phi_g \rho^{true}_g \mathbf{u}_g \right) = M_{CO_2(d)} r^{ev}_{CO_2(d)} + M_{H_2(d)} r^{ev}_{H_2(d)} + M_{FA} r^{ev}_{FA(l)} \\
\partial_t (\Phi_s \rho^{true}_s) + \text{div} (\Phi_s \rho^{true}_s \mathbf{u}_s) = 0 \\
\partial_t (\Phi_{CO_2(d)} \rho^{true}_{CO_2(d)}) + \text{div} (\Phi_{CO_2(d)} \rho^{true}_{CO_2(d)} \mathbf{u}_l) + \mathbf{J}_{CO_2} = M_{CO_2(d)} r^{ch} - M_{CO_2(d)} r^{ev}_{CO_2(d)} \\
\partial_t (\Phi_{H_2(d)} \rho^{true}_{H_2(d)}) + \text{div} (\Phi_{H_2(d)} \rho^{true}_{H_2(d)} \mathbf{u}_l) + \mathbf{J}_{H_2} = M_{H_2(d)} r^{ch} - M_{H_2(d)} r^{ev}_{H_2(d)} \\
\Phi_{ls} \rho^{true}_{ls} \frac{d \mathbf{u}_{ls}}{dt} = -\Phi_{ls} \nabla \mathbf{p}_{ls} + \Phi_{ls} \rho^{true}_{ls} \nu_{ls} \mathbf{I}_{ls} + \Phi_{ls} \rho^{true}_l \mathbf{g} - \dot{m}_g \mathbf{u}_{ls} + \Phi_{ls} \Phi_g \frac{3 \cdot C_d \rho^{true}_{ls}}{8 r_g} |\mathbf{u}_{slip}||\mathbf{u}_{slip}^{ls}|
\]

\[
\nabla \left(\rho^{dyn}_{ls} + \Phi_g \frac{2 \sigma}{r_g} \right) + (\Phi_{ls} \rho^{true}_{ls} - \Phi_g \rho^{true}_g) \mathbf{g} = -\Phi_{ls} C_d \frac{3 \rho^{true}_{ls}}{8 r_g} |\mathbf{u}_{slip}||\mathbf{u}_{slip}^{ls}|
\]

\[
(\rho^{true}_l - \rho^{true}_s) \nabla \rho^{dyn}_{ls} + (\rho^{true}_l - \rho^{true}_s) \mathbf{g} = -\frac{9}{2} \Phi_{ls} \rho^{true}_{ls} \nu_{ls} \mathbf{u}_{slip}^{ls}
\]

\[
\rho C_p \frac{d u}{dt} - k \Delta T = -\frac{L_{ch}}{M_{FA}} r^{ch}_{FA} - \frac{L^{ev}_{FA}}{M_{FA}} r^{ev}_{FA} - \frac{L^{diss}_{CO_2(d)}}{M_{CO_2(d)}} r^{ev}_{CO_2(d)} - \frac{L^{diss}_{H_2(d)}}{M_{H_2}} r^{ev}_{H_2(d)}
\]

\[
\partial_t n + \text{div} (n \mathbf{u}_g) = R
\]
Quasi-steady model

Performing parameter analysis and neglecting of some minor terms, we look for variables $\Phi_g, \Phi_{sl}, u_g, u_{ls}, p_{ls}, T$ and n such that the following holds:

$$\partial_t (\Phi_{ls} \rho_{ls}^{true}) + \text{div} (\Phi_{ls} \rho_{ls}^{true} u_{ls}) = -M_{FA} r^{ch} \quad \text{(MaB.1)}$$

$$\partial_t (\Phi_g \rho_{g}^{true}) + \text{div} (\Phi_g \rho_{g}^{true} u_{g}) = M_{FA} r^{ch} \quad \text{(MaB.2)}$$

$$\partial_t (\Phi_s \rho_{s}^{true}) + \text{div} (\Phi_s \rho_{s}^{true} u_{s}) = 0 \quad \text{(MaB.3)}$$

$$\Phi_{ls} \rho_{ls}^{true} \frac{d_{ls} u_{ls}}{dt} = -\Phi_{ls} \nabla p_{ls} + \Phi_{ls} \rho_{ls}^{true} \nu_{ls} \nabla \Phi_{ls} + \Phi_{ls} \rho_{g}^{true} \Phi_g - \dot{m}_{gl} u_{ls} + \Phi_{ls} \Phi_g \frac{3}{8} \frac{C_d \rho_{ls}^{true}}{r_g} |u_{slg}| u_{slg} \quad \text{(MoB.1)}$$

$$g = -\frac{3}{8} \frac{C_d}{r_g} |u_{slg}| u_{slg} \quad \text{(MoB.2)}$$

$$(\rho_{g}^{true} - \rho_{s}^{true}) g = -\frac{9}{2} \frac{\Phi_{ls} \rho_{ls}^{true} \nu_{ls}}{r_s^2} u_{sl} \quad \text{(MoB.3)}$$

$$\rho C_p \frac{d u_T}{dt} - k \Delta T = -\frac{L^{ch}}{M_{FA}} r^{ch} \quad \text{(EnB)}$$

$$\partial_t n + \text{div} (nu_{g}) = R \quad \text{(Pop)}$$

where $\Phi_{ls} + \Phi_g = 1, u_{sl}^{ls} = u_s - u_l, u_{sl}^{slip} = u_{sl} - u_l$
COMSOL implementation

1. Full model:
 - Laminar Bubbly Flow (CFD Module):
 - MaB.1, MaB.2, MoB.1, MoB.2
 - Heat Transfer in Fluids: EnB
 - Coefficient Form PDE:
 - MaB.3, MaB.4 + MaB.5, Pop
 - explicit form: MoB.3

2. Quasi-steady model:
 - Laminar Bubbly Flow (CFD Module):
 - MaB.1, MaB.2, MoB.1, MoB.2
 - Heat Transfer in Fluids: EnB
 - Coefficient Form PDE:
 - MaB.3, Pop
 - explicit form: MoB.3
The results: Floating

Figure: Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.
The results: Traffic Jam Effect

Figure: Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.

Traffic Jam Effect: $\rho_s^{true} < \rho_l^{true}$
Thank you for your attention!

Details on my poster.

Acknowledgement

- We thank M. Grasemann, A. Dalebrook G. Laurenczy a J. Schumacher for providing preliminary experimental observations and fruitful discussions during the investigation of the problem.

- This work was supported by CCEM and Swisselectric Research under project Hy-Form and by MŠMT CZ under project SVV 260220/2015.