Goal: Abatement of indoor air pollution by the integration of a photocatalytic (PCO) TiO$_2$ coated reactor in HVAC systems.

How? Estimating the adsorption/desorption parameters as vital information for the design and development of the reactor.

Reaction kinetics of PCO acetaldehyde mineralization

\[\text{AcAl}_{(\text{bulk})} \xleftrightarrow{\text{adsorption}} \xrightarrow{\text{PCO1}} \text{AcAl}_{(\text{surface})} \]

\[\text{H}_2 \text{O} + \text{CO}_2 \xrightarrow{\text{PCO2}} 2 \text{CO}_2 + \text{H}_2 \text{O} \]

with \(k \) = reaction rate constant

Using experimental data for parameter estimation

Goal: Determining the kinetic parameters \(k_{\text{adsorption}} \), \(k_{\text{desorption}} \), and \(\Gamma_{\text{filter}} \) using Comsol optimization module in conjunction with the CFD calculations.

Adsorption of acetaldehyde on uncoated fibers

Adsorption of acetaldehyde on TiO$_2$ coated fibers

CFD is useful to unravel adsorption/desorption behavior and to study the photocatalytic reaction mechanism

Excerpt from the Proceedings of the 2015 COMSOL Conference in Grenoble