

SIMULATION OF A TETHER STRUCTURE FOR ULTRA-STRETCHABLE MONOLITHIC SILICON FABRIC

COMSOL

CONFERENCE

PRESENTED BY ARPY'S AREVALO

Stretching the boundaries of inorganic materials

States States

"Advancing electronic systems for wearable & bio-integrated applications"

Current Approaches

Inorganic Substrates "Electrically advanced but mechanically

limitad"

Thinning technologies

- Back-grinding *Limitations:*
- Roughness, Strain, Thickness
 - \rightarrow Constrain applications
- Material wastage

10/20/2015

Organic Substrates "Mechanically attractive but

- ✓ Cost-effective solutions
- Low mobility Poor performance
- Incompatibility with high thermal budget processes COMSOL 2015, Grenoble, France

Hybrid Approach

"A point in between"

- Good efficiency and flexibility
- + Costly, +
 Complex, Performance

Hybrid Approach

Transfer printing technology

Integration of inorganic and polymeric materials

Shape-shifting Demonstration

10/20/2015

Transformational Electronics - A different Approach -

Flexible devices of the future

Demonstrations

10/20/2015

COMSOL 2015, Grenoble, France

Stretchable Electronics - A Different Concept -

J. P. Rojas et al., Appl. Phys. Lett., 105(15), 154101 (2014)

- Structural modifications to achieve stretchability in rigid materials -

Double spiral design to achieve more than 1000% stretchability

10/20/2015

COMSOL 2015, Grenoble, France

Stretchable Silicon: Finite element simulation

J. P. Rojas et al., Appl. Phys. Lett., 105(15), 154101 (2014)

10/20/2015

COMSOL 2015, Grenoble, France

Stretchable Silicon: Experimental Results

Length extension test

Single 5 µm-wide arm; 3

Double 2 μm-arm spira

J. P. Rojas et al., Appl. Phys. Lett., 105(15), 154101 (2014)

Area expansion tests

3 hexagons array; Single 5 μm-arm

ns array; Double 2 μm-

array; Double 2 μm-arm

Ultra-Stretchable Smart Patch for Thermotherapy

A. M. Hussain et al., Adv. Healthcare Mater., DOI: 10.1002/adhm.201400647 (2014)

800% stretchability

Conclusions and Future Work

- Silicon remains still the best material choice for high-performing electronics
- Structural designs allow to expand mechanical properties of materials (even rigid materials such Silicon can become flexible and stretchable)
- Explore and model new geometries and shapes (combinations, bioinspired)
- Incorporate this novel structures with devices and systems for newfrontier electronics.

Thank you! Any Questions?

