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Abstract: Microfluidic is widely used to create 
miniaturized and portable devices. Such devices 
are aimed to constitute diagnostic tools for health 
monitoring, food industry and environmental 
monitoring. Considering health care, point-of-
care (POC) and home-care devices have been first 
developed to provide tools for the developing 
world, but now they are thought to be a universal 
solution. Such systems are totally autonomous 
and use capillarity to move fluids. In this work we 
investigate the dynamics of capillary flows with 
COMSOL Multiphysics. It is shown that the 
square root dependency for capillary filling, 
namely the Lucas-Washburn law for cylindrical 
ducts, is recovered. Moreover, different geometric 
configurations such are stop valves and trigger 
valves have been numerically studied and are 
presented in this work. Finally, capillary 
filaments, a.k.a. Concus-Finn filaments, have 
been numerically investigated by 3D simulations 
performed in microchannels with sharp inner 
corners. 
 
 
Keywords: Capillary flow, Lucas-Washburn law, 
Stop valve, Trigger valve, Concus-Finn filaments. 
 
1. Introduction 

 
Among the different fields in which microfluidic 
approach is essential, biotechnological and 
medical applications are of growing importance 
[1]. The development of inexpensive and easy-to-
use diagnostic tools has been described as an 
important problem to be addressed by 
microfluidic [2-3]. Because there are designed for 
resource-limited sites, these devices should 
respect some characteristics such as portability, 
easy handling, user-friendliness and auxiliary 
equipment independence. These requirements 
favor capillary solutions which are autonomous 
and does not require any external power to move 
the fluid [4-5]. 
 

In such systems the knowledge of the flow 
dynamics is very important to handle properly the 
samples. The dynamic of capillary flow have been 
studied since the 1920s for cylindrical channels 
[6-8]. Studies dealing with non-cylindrical 
uniform geometries [9-11] have recently been 
performed. However biological fluids—such as 
blood—often show non-Newtonian 
characteristics and modern devices have a more 
complex geometry than a uniform duct. Thus 
theoretical studies for these devices may become 
really complicated and simulations appear as an 
interesting tool to investigate the behavior of such 
fluids.  
 
In this work, we show how COMSOL 
Multiphysics can contribute to the understanding 
and development of capillary flows. 
 

 
2. Level-set method with COMSOL 
Multiphysics 
 
Spontaneous capillary flows (SCF) are studied 
using the laminar two-phase flow level set method 
of the COMSOL microfluidic module. This 
method is used to track a fluid-fluid interface. The 
governing equations in such study are the Navies-
Stokes equations to describe the mass and 
momentum transport: 
 

∇ ∙ � = 0		                             (1) 
 

� ���	 + ��� ∙ ∇��	 
= ∇ ∙ 
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where ��� the surface tension force, u is the 
velocity, p is the pressure, � is the dynamic 
viscosity and g is the gravity vector. An additional 
equation is the level set equation for the fluid 
interface: 
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where � is the level set function, � is the interface 
thickness, � is the re-initialization parameter. 
  
A simple geometry and the flow initial conditions 
are represented in figure 1. It consists of the 
channel to be simulated, initially filled with air, 
and an inlet domain initially filled with water. The 
wall condition is set to “wetted wall” with a 
contact angle θ. This contact angle is applied to 
the fluid 2. Since θ characterizes the contact angle 
of water, in “properties of fluids” air is the fluid 1 
and water the fluid 2. 
 
The inlet boundary has a zero pressure inlet 
condition and a volumetric fraction of water of 1. 
The outlet boundary, open to the outside air, has 
also a zero pressure boundary condition. The 
boundary between the two initial fluid domains 
constitutes the initial interface. When it is 
possible, one can reduce the number of 
computational meshes by inserting a symmetry 
condition along the mid-axis. 
 

 
Figure 1. Typical 2D geometry used for simulations 
of capillary flow along with the boundary conditions. 

 
 
In this paper, two ways to depict the 
computational results are used: first, the filling 
distance as a function of time z(t), second the 
filling velocity as a function of time V(t). In the 
first case, the position of the interface at a given 
time is obtained upon integration of the level set 
variable along the symmetry line. In the second 
case, for each time, the filling velocity is obtained 
by averaging the velocity field on the initial 
interface. 
 
 
 

 
 
3. Results and Discussions 
 
Simulations of capillary flows with COMSOL are 
analyzed from two different aspects. On one hand 
we have studied the dynamic of capillary filling 
and more precisely the time dependency of a 
capillary filling. On the other hand we focused our 
attention to some geometric effects such a stop 
valves or Concus-Finn filaments. 
 
3.1 Dynamics of capillary flows. 
 
First the time-dependency of a capillary filling is 
analyzed. In order to do so, different 2D 
geometries have been treated using COMSOL. 
Figure 2 shows the filling distance of a 100µm-
wide channel versus time. The contact angle is 
θ=60°. 
 
 

 
Figure 2. Filling distance versus time for a channel 
with a width of 100µm and a contact angle of 60°.  

 
A square root dependency of the filling distance 
according to time is observed, in agreement with 
the Lucas-Washburn-Rideal (LWR) law [6-8]: 
 

# = $%	&	'()	�*�
+	, √	                  (4) 

 
where � is the surface tension, r is the radius of 
the capillary tube and . is the contact angle. Upon 
derivation of (4), the velocity is expressed by 
 

� = $%	&	'()	�*�
+	/

0
√�                  (5) 
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By plotting the filling velocity of the capillary 
flow versus time (Figure 3), one sees that the 
dimension of the channel acts as predicted by (5): 
the smaller the dimensions of the channel, the 
slower the filling time 
 

 
Figure 3. Velocity of the capillary filling time. The 
smaller the channel, the lower the capillary filling. 

 
 
In a second step, the capillary filling of a non-
uniform channel has been simulated. The 
geometry consists of narrow and large segments 
alternately. One observes alternately high and low 
velocities, according to whether the interface is 
located in a narrow or large segment, respectively 
(Figure 4). This is consistent with our recent study 
and confirmed with experimental observations for 
a rectangular channels (figure 5). 
 

 
Figure 4. Velocity of the capillary filling versus the 

filling distance for a non-uniform channel. The 
geometry of the channel is reminded on top of the plot 

to link the velocity variations to the geometry 
variations. 

 
This approach shows that a succession of different 
dimensions of the channel cross-section 

complicates the LWR approach of Eq (5). In this 
particular case, the friction in the narrow sections 
plays a major role in the dynamics. 

 
Figure 5. Velocity of the capillary filling for an open 
rectangle channel for which the width alternates from 
300µm to 500µm. The green curve is the analytical 

model whereas the red curve shows the experimental 
data.  

 
3.2 Geometrical effects on capillary flows. 
 
In this section, the effects of sudden enlargements 
of the channel cross-section are analyzed. It is 
shown that sudden enlargement can act as stop 
valves, either by pinning the flow on a sharp edge, 
or simply by a curvature effect [12,13].    
 
Figure 6 shows how the spontaneous capillary 
flow stops when the interface reaches the 
enlargement. 

 
 

Figure 6. Map of the volume fraction of water within 
a stop valve when the capillary flow stops. The water 
is colored in blue, whereas the air is represented in 
brown. The interface, taken at a volumic fraction of 

water of 0.5, is depicted with the dashed-line. 
 
 
As the contact angle with the wall must be θ, the 
interface flattens when reaching the enlargement, 
and the Laplace pressure, motor of the capillary 
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flow, vanishes. Note that the interface thickness 
plays a major role in such a simulation. In figure 
7, one can see that for a thin interface (5µm) the 
capillary filling is stopped (bright curves) whereas 
for thick interfaces (darker curves) the capillary 
filling may pass the enlargement. In fact if the 
interface is too thick, the flow velocity will 
decrease at the enlargement but the interface will 
finally pass through. 
 
Figure 7 also shows that the contact angle has an 
important effect: in the case of a small contact 
angle (θ=30°, red curves) the interface appears to 
pass through the enlargement more easily than in 
the case of a large contact angle (θ=60°, blue 
curves). In fact the smaller the contact angle, the 
thinner must be the interface to be stop by the 
enlargement. Otherwise it will result in a delay 
valve and not in a stop valve. 
 

 
 

Figure 7. Position of the interface versus time during 
the capillary filling of the stop valve geometry scheme 

in Figure 5. Blue curves: contact angle of 60°. Red 
curves: contact angle of 30°. Different interface 

thickness have been simulated (from brightest to the 
darkest: 5, 10 and 20µm). 

 
An elaborated version of the stop valve is the 
trigger valve shown in figure 8. If a stop valve is 
located at the wall of a second channel, a flow 
within this second channel will break the pinning 
effect and then open the stop valve. Figure 8 
shows images from a COMSOL simulation of a 
trigger valve compared to the experimental 
pictures. It is observed that the dynamic of the 
interface for the trigger valve simulated with 
COMSOL is very consistent with what happens 
experimentally. 

 

 
Figure 8. Left: simulation of a trigger valve with 

COMSOL. Right: Pictures of a trigger valve under 
capillary flow taken with a high-speed camera. 

 
 
Finally COMSOL software has also been used to 
observe a 3D geometric effect: the capillary 
Concus-Finn filaments [14-16]. This geometry 
effect occurs inside sharp corners. In such a case 
no equilibrium position of the interface can be 
reached and a filament extends endlessly in the 
corner. 
 
It has been demonstrated that the filament 
propagates inside the corner, ahead of the main 
flow, if the following inequality is verified: 
 

. 1 	2, − 	3                        (6) 

 
where θ is the contact angle and α the dihedral half 
angle. 
 

 
Figure 9. 3D view of a capillary filling within a right 
angle. In a) the contact angle is 30° (<45°) and there is 

a Concus-Finn filament, whereas in b) the contact 
angle is 60° (>45°) and there is no filament. 
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Figure 9 shows two simulations of a spontaneous 
capillary flow in a closed rectangular channel 
(axially cut by two symmetry planes): the first one 
with a contact angle satisfying (6): θ=30°<45°, 
and the second one with a contact angle outside 
inequality (6): θ=60°>45°. 
 
In the first case a filament forms, in the second 
case there is no precursor filament. 
 
 
4. Conclusion 
 
In this work, comparisons between known 
dynamical behaviors of capillary flows and 
simulations performed with COMSOL 
Multiphysics have been performed.  
 
First, it is demonstrated that the known √	-
dependency of a capillary filling (Lucas-
Washburn law) is obtain by the simulations. 
Variation of the filling velocity depending on the 
dimension of the channel and within non-uniform 
channels have also been recovered. 
 
On the other hand, geometric effects, i.e. stop and 
trigger valves, have also been simulated. High-
speed camera recording showed that the dynamic 
of the simulated interface during the trigger is 
very consistent with experimental experiments.  
 
Finally it is shown that using 3D geometries, 
Concus-Finn filaments can be obtained along an 
inner sharp angle if the Concus-Finn relation is 
verified. 
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