Ceatech to industry

leti

CAPILLARY FLOWS: DYNAMICS & GEOMETRY EFFECTS

WHAT IS A SPONTANEOUS CAPILLARY FLOW ?

• The flow is driven by the capillary pressure at the front interface.

2D GEOMETRY, CONDITIONS & POSTPROCESSING

<u>Filling distance</u>: Integration of the level set function along the symmetry axis. <u>Filling velocity</u>: Average of the velocity over the initial interface.

rom research to industry

DYNAMICS

CAPILLARY FLOWS DYNAMICS

THE LUCAS-WASHBURN-RIDEAL LAW (UNIFORM CHANNELS)

The larger the channel is, the higher the velocity is. $\frac{r \gamma \cos(\theta)}{8 \mu} \frac{1}{\sqrt{t}}$ *u* = Velocity magnitude (m/s) Width: 500 µm Width: 100 µm 0.02 0.04 0.06 0 Time (s) Data extracted from a COMSOL simulation

Washburn & al, Phys. Rev. 17(3), p 273, (1921) COMSOL Conference | David Gosselin, Jean Berthier, Guillaume Delapierre, Didier Chaussy and Naceur Belgacem | 10/15/2015 | 5

NON-UNIFORM CHANNELS

Schematic of the channel used.

At an enlargement:

Why does the velocity decrease whereas the capillary force increases ?

NON-UNIFORM CHANNELS

There is a balance between the capillary force and the drag force.

$$F_{drag} = F_{cap}$$

$$F_{drag} = k * V$$

Because of the mass conservation, $VR^2 = cst$

If the velocity increases in the large region, the velocity in the narrow region would increase as R^2 , and so the drag force.

 $F_{cap} = 2 \pi R \cos(\theta)$

The capillary force evolves according to R.

-> This can not compensate the increase of the drag force.

-> The velocity must decrease when the flow reaches a larger region.

CAPILLARY FLOWS DYNAMICS

leti

DYNAMIC CONTACT ANGLE

- At the beginning of the capillary flow, the velocity is high and the dynamic contact angle tends to 90°.
- As the liquid flows, the velocity decreases and the dynamic contact angle decreases towards the static contact angle.

Bracke formula:

$$\cos(\theta_d) = \cos(\theta_s) - 2(1 + \cos(\theta_s)) * \sqrt{Ca}$$
$$Ca = \frac{\mu V}{\gamma}$$

Because the dynamic contact angle is higher than the static contact angle, the capillary filling is slowed down.

ceatech to industry

GEOMETRY EFFECTS

TRIGGER VALVE

How does it work?

Video sequence realised with a high speed camera. Time is slowed down 40 times.

TRIGGER VALVE

How does it work?

Video sequence realised with a high speed camera. Time is slowed down 40 times.

TRIGGER VALVE

CONCUS-FINN FILAMENTS

Concus & al, PNAS, 63(2), p 292 (1969)

- Dynamic contact angle have been implemented.
- Geometry effects occuring during a capillary flow can be simulated with COMSOL Multiphysics.

CONCLUSION

Perspectives:

Ceatech

- Simulations with 3D geometries.
- Simulations with non-Newtonian fluids.

Thank you for your attention

