Iterative Learning Control for Spatio-Temporal Repetitive Processes

Damian Kowalów, Maciej Patan

COMSOL CONFERENCE
2015 GRENOBLE

Institute of Control and Computation Engineering
University of Zielona Góra
Outline

1. Introduction
2. Iterative learning control
3. Illustrative example
4. Conclusions
Introduction

Process repeatability

- the same tracking error, oscillations and overshoot produced along each replicated trial,
- increasing tracking performance with knowledge of repetitive signals.
Introduction

Process repeatability
- the same tracking error, oscillations and overshot produced along each replicated trial,
- increasing tracking performance with knowledge of repetitive signals.

Challenges
- compensation of random disturbances,
- general control scheme to the repetitive spatio-temporal process.
Subject of the talk

use data from repetition of the same process controlled by PID several times to improve:

- quality of control,
- robustness with respect to model uncertainty.
use data from repetition of the same process controlled by PID several times to improve:

- quality of control,
- robustness with respect to model uncertainty.
use data from repetition of the same process controlled by PID several times to improve:

- quality of control,
- robustness with respect to model uncertainty.
use data from repetition of the same process controlled by PID several times to improve:

- quality of control,
- robustness with respect to model uncertainty.
use data from repetition of the same process controlled by PID several times to improve:

- quality of control,
- robustness with respect to model uncertainty.
Motivations

- self–learning methodology,
- feedforward signals for subsequent trials through iterative update,
- high performance with low cost (transient tracking error),
- objects with a lot of measurement points,
- repetitive processes,
- and many more . . .
Consider $y_d(t)$ which denote a continuous reference trajectory defined over a finite time interval $T = [0, t_f]$, where $t_f < \infty$ denotes the trial length, then typical Iterative Learning Control law

$$v_{k+1}(t) = \mu v_k(t) + \eta \dot{e}_k(t)$$

where

- $k \geq 0$ — trial or cycle number,
- $v(t)$ — the system input along the trial,
- μ — momentum coefficients,
- η — learning coefficients,
- $y_k(t)$ — system output,
- $e_k(t) = y_d(t) - y_k(t)$ — tracking error.
Learning controller

Could be splits into

- \(L \) — learning filter, inverse of process sensitivity,
- \(Q \) — low pass filter,
- \(P \) — object plant,

\[
\begin{align*}
L & \quad + \quad + \\
\quad & \quad + \\
\quad & \quad memory \\
\quad & \quad + \\
C \quad & \quad + \\
\quad & \quad - \\
P \quad &
\end{align*}
\]
Illustrative example

Gas combustion chamber

- three dimensional model,
- inlet with constant concentration and velocity,
- inlet with constant concentration and controlled velocity,
- one outlet,
- mixing to achieve effective combustion (inside point).
Illustrative example

Gas combustion chamber

- three dimensional model,
- **inlet with constant concentration and velocity**,
- inlet with constant concentration and controlled velocity,
- one outlet,
- mixing to achieve effective combustion (inside point).

![Diagram of a gas combustion chamber with indicated inlet and outlet points.](image-url)
Illustrative example

Gas combustion chamber

- three dimensional model,
- inlet with constant concentration and velocity,
- inlet with constant concentration and controlled velocity,
- one outlet,
- mixing to achieve effective combustion (inside point).
Gas combustion chamber

- three dimensional model,
- inlet with constant concentration and velocity,
- inlet with constant concentration and controlled velocity,
- **one outlet**,
- mixing to achieve effective combustion (inside point).
Illustrative example

Gas combustion chamber

- three dimensional model,
- inlet with constant concentration and velocity,
- inlet with constant concentration and controlled velocity,
- one outlet,
- mixing to achieve effective combustion (inside point).
Mathematical model of the problem

- fluid flow: Navier-Stokes equations,
- mass balance: convection and diffusion application

\[
\rho \frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot [\eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{u} p = \mathbf{F},
\]

\[\nabla \cdot \mathbf{u} = 0,\]

\[\delta_{ts} \frac{\partial c}{\partial t} + \nabla \cdot (-D \nabla c) = R - \mathbf{u} \cdot \nabla c,\]

where
- \(\rho [\text{kg/m}^3]\) — density,
- \(\mathbf{u} [\text{m/s}]\) — velocity vector,
- \(\nabla\) — gradient operator
- \(\mathbf{F} [\text{N/m}^3]\) — volume force vector,
- \(c [\text{mol/m}^3]\) — concentration,
- \(\eta [\text{kg/m}^3]\) — dynamic viscosity,
- \(p [\text{Pa}]\) — pressure at output,
- \(R [\text{mol/(m}^3\text{s)}]\) — reaction rate,
- \(D [\text{m}^2\text{s}]\) — diffusion coefficient,
- \(\delta_{ts}\) — time scaling coefficient.
Boundary conditions

For mass balance:
- $c_t [\text{mol/m}^3]$ — concentration at upper input,
- $c_c [\text{mol/m}^3]$ — concentration at controlled input,
- $\mathbf{n} \cdot (-D \nabla c) = 0$ — output boundary condition,
- $\mathbf{N} \cdot \mathbf{n} = 0$ — for walls where molar flux $\mathbf{N} [\text{mol/m}^2 \cdot \text{s}]$

For fluid flow:
- $\mathbf{u} = (0, -u_t, 0)$ — constant inlet,
- $\mathbf{u} = (u_c, 0, 0)$ — controlled inlet,
- $p_0 = 0$ — pressure at output,
- $\mathbf{n} \cdot \mathbf{n} = 0$ — inlet sections,
- $\mathbf{u} = 0$ — walls.

transport of the reactants at the outlet and dispersal in the main direction of the convective flow was neglected.
Simulations results – concentration level

Time=1[s] Concentration, c [mol/m3]
Simulations results – concentration level

Time=2[s] Concentration, c [mol/m³]
Simulations results – concentration level

Time=3[s] Concentration, c [mol/m³]
Simulations results – concentration level

Time=4[s] Concentration, c [mol/m^3]
Simulations results – concentration level

Time=5[s] Concentration, c [mol/m³]

[Graph showing concentration distribution over a time of 5 seconds]
Simulations results

Simple PID and constant reference tracking

Iterative Learning Control in 1st and last trial
Simulations results

Error reached in 1st and last trial of ILC of ILC

Error norm in each trial of ILC
Conclusion

- Summary of the contributions provided by this work to the state-of-the-art:
 - iterative learning control for distributed parameter system was presented as an promising approach for the improvement of control quality
 - control scheme was illustrated on the application to the fluid dynamics with the mass transport as an example of real chemical process.
- Further work:
 - more general methodology for combining sequential design and ILC techniques in order to increase the control quality for processes,
 - extensions to more wider range of systems,