

STUDY OF ELECTROCHEMICALLY GENERATED TWO-PHASE FLOWS

Jonathan SCHILLINGS, J. DESEURE, O. DOCHE

LEPMI / SIMAP

(CNRS/Grenoble–INP/Université Joseph Fourier/Université de Savoie)

PHELMA Campus 1130, rue de la Piscine - BP 75 F-38402 - St-Martin d'Hères Cedex

1 - CONTEXT

1.1 – CONTEXT : GAS GENERATION DURING ELECTROCHEMICAL PROCESSES

• Gas bubbles are frequently generated in electrochemical processes

- As principal product (e.g. in electrolysis)
 - > High gas recuperation rate must be reached
- As a by-product (e.g. in electrodeposition)
 - > Negative impact on the principal reaction should be avoided
- Bubbles behavior in electrolyte strongly affects process performances

1.1 – CONTEXT : GAS GENERATION DURING ELECTROCHEMICAL PROCESSES

o Bubble-induced

- Natural convection
 - > Mixing
- Surface coverage
 - Mass transfer limitation
- Bulk conductivity drop
 - Current limitation

- o Risk of plume mixing
 - Decreased yield
 - Energy production (H₂ + O₂)

Strong coupling between physical phenomena

- Difficulty to control the process
- Numerous parameters for empirical analysis
- Necessity of a realistic model

2 – MODEL DESCRIPTION, RESULTS AND DISCUSSION

2.1 - MIXTURE MODEL^[1]

- CFD equations : Laminar, Newtonian fluid, $\rho_D \ll \rho_C$, void fraction α
- $\vec{\nabla} \cdot \vec{U} = 0$ (Mixture volume conservation)
- $\vec{\nabla} \cdot \vec{U_D} = 0$ (**Dispersed phase** volume conservation)

 $\rho_{C}(1-\alpha)\vec{q}\cdot\nabla\vec{q} = -\vec{\nabla}P + \rho_{C}g\alpha\vec{z} + \left(\vec{\nabla}\cdot\left[\mu(\alpha)(\nabla\vec{q}+\nabla\vec{q}^{T})\right] - \vec{\nabla}\left[\frac{2}{3}\mu(\alpha)\vec{\nabla}\cdot\vec{q}\right]\right)$ (Momentum conservation)

• **Closure model for relative** flux : small rigid spheres approximation $\overrightarrow{U_R} = \overrightarrow{U_D} - \alpha \overrightarrow{U} = \overrightarrow{U_{Stokes}} + \overrightarrow{U_{Hdiff}} + \overrightarrow{U_{Sdiff}} + \overrightarrow{U_{Smig}} + \overrightarrow{U_{Saff}}$ ^[2]

M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York, NY, 2011.
R. Wedin, A.A. Dahlkild, Ind. Eng. Chem. Res. 40 (2001) 5228–5233

2.1 - MIXTURE MODEL : ASSUMPTIONS

Electrokinetics not computed

- Uniform current approximation
 - > Small influence on two-phase flow results

• *VC* ~ **0** due to strong mixing

o Heat generation neglected

 Thermal-induced convection << bubble-induced convection

2.2 - MODEL VALIDATION : SIMULATING EXPERIMENTAL RESULTS

2.2 - MODEL VALIDATION : SIMULATING EXPERIMENTAL RESULTS

Water alkaline electrolysis, bubble-induced convection

J. Appl. Electrochem. 30 (2000) 767–775

Void fraction evolution and streamlines (2000 A/m²)

10

$2.3-CREATING NEW MODEL : THE THERMAL ANALOGY <math display="inline">^{[4]}$

Bubble plume ~ thermal boundary layer

- Buoyancy forces and void fraction concentrated in the vicinity of electrodes
- Dispersed phase conservation ~ convectionconduction equation

$$V_x \frac{\partial \alpha}{\partial x} + U_y \frac{\partial \alpha}{\partial y} = \frac{\partial}{\partial x} \left(K_\alpha \frac{\partial \alpha}{\partial x} \right)$$
$$K_\alpha \sim a U_S$$

$$Pr_{\alpha} = \frac{v}{K_{\alpha}}$$

- Boundary layer thickness scale analysis
 - > Rayleigh-like number

$$R\alpha_{e,f} = \frac{\nu U_g e^5}{a^6 g L} \qquad \qquad \frac{\delta_{\alpha}}{e} \sim R\alpha_{e,f}^{-1/4}$$

[4] Schillings et al., Int. J. Heat Mass Transfer 85 (2015) 292-299

2.3 - PR_α >> 1

Relative plume thickness vs. Rayleigh-like number (log-scale)

12

2.3 - $PR_{\alpha} \ll 1$: LIMITING CASE

Relative plume thickness vs. current density

13

2.4 - SENSIBILITY TO FORCED CONVECTION

• Plume development in a Poiseuille flow :

•
$$\frac{\delta_{\alpha}}{e} \sim \left(\frac{L}{e}\right)^{1/3} Pr_{\alpha}^{-1/3} Re_{D_H}^{-1/3}$$

Relative plume thickness vs. Reynolds-Prandtl (log scale)

3 – RECENT WORKS & PROSPECTS

Experiments

- \rightarrow High speed camera recorder
- → Flow caracterization (bubbleinduced & forced convection)
- → Electrochemical Impedance Spectroscopy

DNS

- → Implementation of Lagrangian tracking
- → Two-way coupling between the dispersed and continuous phase
- → Simulation of collisions between bubbles

16

ANY QUESTION ?

Jonathan SCHILLINGS, J. DESEURE, O. DOCHE

LEPMI / SIMAP

(CNRS/Grenoble–INP/Université Joseph Fourier/Université de Savoie)

PHELMA Campus 1130, rue de la Piscine - BP 75 F-38402 - St-Martin d'Hères Cedex