Simulation of a Pressure Driven Droplet Generator

V. MAMET, B. DUPONT, P. NAMY

1SIMTEC, France

15th October 2015
Outline

1) Overview of microfluidics
2) Presentation of the process
3) Model
4) Results
5) Outlook
1) Overview of microfluidics

- Very studied physics
 - Potential application: 2D (microchips, MEMS, etc.), 3D (Flow focusing, manipulation of bio-ingredients)

- Dealing with a special category of microfluidics: the generation of droplets

The goal is to optimize an industrial process - the droplet generator - by computational modeling

Modeling a spray

Pictures: potomac-laser.com, upperton.com, comsol.com
2) Presentation of the process

Flow regimes & modes

<table>
<thead>
<tr>
<th>Flow regimes</th>
<th>Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary</td>
<td>Dripping</td>
</tr>
<tr>
<td>Dynamic (SD)</td>
<td>Production at the exit orifice</td>
</tr>
<tr>
<td>Transient (T)</td>
<td>Jetting</td>
</tr>
<tr>
<td>Constant shape</td>
<td>Thread break up</td>
</tr>
<tr>
<td>over time</td>
<td></td>
</tr>
<tr>
<td>Periodic flow</td>
<td></td>
</tr>
</tbody>
</table>

Si, Li, Yin and Yin, 2009, *Modes in flow focusing and instability of coaxial liquid-gas jets*
3) Model

- Assumptions
 - Rotational symmetry → 2D-axi consideration
 - Neglecting the influence of temperature
 - No chemical reactions

- Fluids & interfacial properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Liquid (DP)</th>
<th>Gas (CP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m3)</td>
<td>957</td>
<td>1.225</td>
</tr>
<tr>
<td>Viscosity (Pa.s)</td>
<td>1.8e-3</td>
<td>1.8e-5</td>
</tr>
<tr>
<td>Surface tension (N/m)</td>
<td>35.6e-3</td>
<td></td>
</tr>
<tr>
<td>Contact angle (rad)</td>
<td>$\pi/2$</td>
<td></td>
</tr>
</tbody>
</table>
3) Model

- **Governing equations**

 - Liquid & gas flows governed by the Navier-Stokes equations for incompressible flows

 \[
 \nabla \cdot \mathbf{u} = 0
 \]

 \[
 \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot [-p I + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \rho \mathbf{g} + F_{st}
 \]

 - Interface motion of the multiphase flow: simulated with COMSOL module Two-Phase Flow, Phase Field approach.

 - Resolution of the Cahn-Hilliard equation

 \[
 \frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \nabla \cdot \left(\frac{3\epsilon \sigma}{2\sqrt{2}} \chi \nabla \left[-\nabla \cdot \epsilon^2 \nabla \phi + (\phi^2 - 1) \phi \right] \right)
 \]
3) Model

- **Numerical details**
 - Range of liquid flow rate: 1 to 10 ml/h
 - Range of gas pressure: 0.02 to 1 bar
 - Time setting: $[0, 0.01s]$ with timestep of $1e^{-4}s$
 - BDF for the time-dependent study
 - Newton-Raphson algorithm to linearize
 - PARDISO as direct solver
 - Calibration studies on mobility & phase field parameter
4) Results

Stationary Dynamic
4) Results

- Flow regimes as a function of the Weber number
 - Liquid Weber:
 \[We_{liq} = \frac{\rho u^2 R_{in}}{\sigma} = \frac{\text{kinetic energy}}{\text{surface tension}} \]
 - Gas Weber:
 \[We_{gas} = \frac{2P_{gas} R_{out}}{\sigma} = \frac{\text{pressure}}{\text{surface tension}} \]

- Good agreement with experimental data from Si et al.
- Experimental validation in progress
5) Outlook

- Further work:
 - Simulation of droplets modes
 - Study on the effect of geometry
 - Optimization aiming the smaller monodispersion
 - Phenomena underlying the spray: atomization, deposit, etc.
Thank you for your attention!

Any questions?

Contact: victorien.mamet@dbv-technologies.com