

Integration of true-to-mechanism (DeProF) relative permeability maps for 2-ph flow in p.m. into the COMSOLTM Earth Science Module

M.S. Valavanides¹, E.D. Skouras^{2,3}, A.N. Kalarakis³, V.N. Burganos²

¹Dept. Civil Engineering, TEI Athens (marval@teiath.gr)

² FORTH/ICEHT

³Dept. Mechanical Engineering, TEI Western Greece

Abstract

- True-to-mechanism relative permeability maps for steady-state 2-phase flow in porous media were integrated within the COMSOL™ Earth Science module, to resolve field-scale flows.
- The essential characteristic of relative permeability dependence on local flow conditions (capillary number and flowrate ratio) have been provided by the *DeProF* model and associated theory.
- The flow dependent relative permeability maps have been incorporated in the Earth Science module and an appropriate modeling strategy has been contrived to treat the actual 2-phase flow problem as a an equivalent "effective-phase" (1-ph) flow problem.
- Various flow arrangements, considering gravity effects and sources/sinks have been simulated.
- The simulations showed that the integration scheme is stable, it converges and numerical instabilities are only localized in areas where flow concentration takes extremely high values
- (as expected).
- Keywords: Two-phase flow, porous media, relative permeability, simulators, field scale.

Objectives

- To consider the possibility to develop more accurate 2-ph flow in porous media FEM simulators
 - Implementation of the DeProF model (true-to-mechanism) relative permeability maps, within state-of-the-art FEM algorithms incorporating Darcian flow modules,
 - in order to resolve field-scale 3D steady-state flows in porous media for different geometrical & flow configurations.
- The mechanistic model *DeProF* for immiscible steady-state two-phase flow in pore networks [Valavanides, *Oil & Gas Science and Technology* **67**(5) (2012)]
 - predicts the relative permeability of each phase using the concept of decomposition in prototype flows.
- It combines
 - effective medium theory with appropriate expressions for pore-to-macro scale consistency for oil and water mass transport, and
 - takes into account the pore-scale mechanisms and the network-wide cooperative effects as well as the sources of non-linearity, caused by the motion of interfaces and other complex effects.

Objectives (contnd)

- Using the DeProF model, steady-state 2-ph flow in porous media is described in terms of
 - capillary number, Ca
 - oil/water flowrate ratio, r
 - oil/water viscosity ratio, κ
 - advancing / receding contact angles
 - parameter vector, comprising dimensionless geometrical and topological parameters affecting the flow
 - including absolute permeability of porous medium, k
- Extended DeProF simulations and experimental validation provide
 - scaling law functions of Ca & r, for the reduced pressure gradient, x(Ca,r) and relative permeabilities, k_{ro} , k_{rw}
 - Show remarkable specificity
- These maps were integrated into general purpose FEM solvers (COMSOL™ Earth Science module) of 2-ph flows in p.m.

The DeProF Model for 2-ph flow in porous media

The DeProF model of the macroscopic 2ph flow and its conceptual decomposition into connected pathway flow (CPF) and disconnected-oil flow (DOF), comprising ganglion dynamics (GD) and drop traffic flow (DTF).

Functional form of the reduced pressure gradient x(CA,r)

- True-to-mechanism, flow dependence of relative permeabilities
- Functional dependence of reduced pressure gradient, on local flow conditions → universal scaling law x(Ca,r) (DeProF theory)

$$x(Ca,r) = \left(-\frac{\partial \tilde{p}}{\partial \tilde{z}}\right) \frac{\tilde{k}}{\tilde{\gamma}_{ow}Ca} = \begin{cases} A(r)(10^{6}Ca)^{-B(r)} & r \leq r_{\lim}(Ca) \\ n/a & r > r_{\lim}(Ca) \end{cases}$$

$$A(r) = 10^{\sum_{i=0}^{3} A_i (\log r)^i}, B(r) = \sum_{i=0}^{3} B_i (\log r)^i$$

i	A _i	B _i
0	1,522	0,7215
1	0,077	-0,1356
2	0,1090	-0,0037
3	0,0332	0,0035
		-

Oil & water relative permeabilities, k_{ro} & k_{rw} , readily computed (Valavanides, 2012):

$$k_{rw}(Ca,r) = (\tilde{\gamma}_{ow}Ca) \left[\tilde{k} \left(-\partial \tilde{p} / \partial \tilde{z} \right) \right]^{-1} = \frac{1}{x(Ca,r)} \qquad k_{ro}(Ca,r) = \kappa r k_{rw}(Ca,r)$$

$$(\kappa = \tilde{\mu}_o / \tilde{\mu}_w)$$

Implementation & Integration Scheme

- Treat 2-ph flow problem as equivalent 1-ph (saturated) flow problem.
- Virtual fluid local effective mobility = sum of local oil & water mobilities
- FEM algorithm solves equivalent 1-ph (saturated) flow problem (potential)
- [Darcy + continuity + transport equation for the water/oil (DeProF)]
- Apparent density and viscosity = saturation weighted averages of fluid properties
- Effective hydraulic conductivity depends on local flow conditions.
- Effective (equivalent 1-ph) superficial velocity=sum of oil and water velocities.
- Local values of *Ca* & *r* are readily computed and the local value of the effective mobility is estimated as the sum of the local individual mobility of oil & water.
- Mobilities (or, equivalently, the relative permeabilities), and the reduced pressure gradient, are looked-up from the *DeProF* relative permeability map for the corresponding (*Ca*, *r* values.
- Implementation standard 1-ph Darcy velocity *vs* pressure gradient relation for equivalent phase delivers the new effective superficial velocity (equivalent 1-ph flow).
- Velocity decomposition into local oil & water superficial velocities (value flowrate ratio).
- Procedure repeated along effective flow streamlines (coincide actual 2-ph streamlines).

Integration Scheme Basic Analysis (1)

Key variables:

oil/water flowrate ratio:
$$r = \frac{\tilde{q}_o}{\tilde{q}_w} = \frac{\tilde{U}_o}{\tilde{U}_w}$$

Capillary number:
$$Ca = \frac{\tilde{\mu}_w \tilde{U}_w}{\tilde{\gamma}_{ow}}$$

Viscosity ratio:
$$\kappa = \frac{\tilde{\mu}_o}{\tilde{\mu}_w}$$

Saturation ratio:
$$\frac{s_o}{s_w} = \frac{\tilde{\mu}_o}{\tilde{\mu}_w} \frac{\tilde{U}_o}{\tilde{U}_w} = \kappa r$$

Integration Scheme Basic Analysis (2)

- The non-linear problem of 2-ph flow considers
 - mass conservation of a mixture of two phases
 - Effective Darcy velocity,
 - arithmetic mean density, and
 - harmonic mean viscosity,
 - phases (species) transport: convection and diffusion (omitted here)

Mass conservation:
$$\frac{\partial \varepsilon \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Phase transport:
$$\frac{\partial \mathcal{E} s_o \rho_o}{\partial t} + \nabla \cdot s_o \rho_o \mathbf{u} = \nabla \cdot D_o \nabla (s_o \rho_o)$$

Darcy mean velocity:
$$\mathbf{u} = -\frac{\mathbf{k}}{\mu} \nabla p$$

Efective 1-ph properties:
$$\rho = s_o \rho_o + s_w \rho_w$$
, $\frac{1}{\mu} = s_w \frac{k_{rw}}{\mu_w} + s_o \frac{k_{ro}}{\mu_o}$

Integration Scheme Basic Analysis (3)

The Darcy problem is non-linear since the velocity is dependent on the relative permeabilities, which are also functions of velocity:

$$\mathbf{u}_{w/o} = -\frac{k_{\text{rw/ro}}\mathbf{k}}{\mu} \nabla p$$

$$\mathbf{u} = -\frac{\mathbf{k}}{\mu} \nabla p = -\frac{\mathbf{k}}{\mu} \frac{\tilde{\gamma}_{ow} Ca}{\mathbf{k}} x (Ca, r) = u_w \left[-A(r) (10^6 Ca)^{-B(r)} \right]$$

Velocity can be rewritten as a function non-dependent of itself, which can be solved with direct solvers:

$$\mathbf{u} = \left(\frac{-2\mathbf{k}\nabla p}{A(r)}\right)^{\frac{1}{1+B(r)}} \frac{S_{w}}{\kappa} \left(\frac{\mu_{w} 10^{6}}{\gamma_{ow}}\right)^{\frac{B(r)}{1+B(r)}} \qquad \kappa = \frac{\mu_{o}}{\mu_{w}}$$

Solution is obtained with typical FEM methods, after mesh independence analysis.

Indicative Applications

Integration scheme within the COMSOL™ Earth Science module has been applied

- to a variety of injection/production patterns
- solitary wells
- direct and staggered line drives
- 5-, 7- and 9-spot water flooding arrangements* (exhibit 1)
- annular sleeve water drives (exhibit 2)

for different orientations including gravity effects

^{*}Comparisons between direct prediction of the energy utilization index (process efficiency) [Valavanides & Skouras, Fresenius Environmental Bulletin 23(11) 2014] and FEM/DeProF simulations, are made.

7-spot arrangement Waterflooding a confined oil reservoir

Oil-Water pressure profile

Oil saturation profiles

2015 GRENOBLE

Evolution of saturation profiles

Oil extraction rate (at outlet)

Cumulative oil extraction at 3000 days:

•P_{in}=0,1 atm: 9832.32 m³/m

•P_{in}=1,0 atm: 53066.88 m³/m

Volume-averaged oil relative permeability, k_{ro}

Application 2Bottom, annular sleeve, water-drive arrangement

Exhibit 2Bottom, annular sleeve, water-drive arrangement

Conclusions

- Functional forms of 2-ph flow in p.m. true-to-mechanism relative permeability maps have been used to simulate waterflooding arrangements.
- The essential characteristic of relative permeability dependence on the local flow conditions have been provided by the DeProF model.
- Local flow conditions pertain to superficial velocities of oil and water or, equivalently, capillary number and flowrate ratio (true-to-mechanism).
- Flow-dependent relative permeability maps have been integrated in the COMSOL™ Earth Science module.
- Actual 2-ph flow problem → equivalent "effective-phase" (1-ph) flow problem.
- Stable, converging integration scheme, numerical instabilities are only localized in areas where flow concentration takes extremely high values.
- Development of efficient & more reliable simulators incorporating the actual physics of two-phase flow in porous media processes.

Acknowledgements

ImproDeProF project → http://users.teiath.gr/marval/ArchIII_en.html

Research work co-funded by the European Union (European Social Fund) and Greek national resources in the frameworks of the "Archimedes III: Funding of Research Groups in TEI of Athens" (MIS 379389) research project of the "Education & Lifelong Learning" Operational Program

Thank you!

For questions and inquiries

Marios Valavanides (marval@teiath.gr)
or
Eugene Skouras

ImproDeProF project → http://users.teiath.gr/marval/ArchIII_en.html

(...just google → "ImproDeProF")

