The use of COMSOL to explore flooding and rising water problems related to heritage

Henk Schellen Zara Huijbregts Koop Pieter Ziel Jos van Schijndel Rick Kramer

COMSOL CONFERENCE 2015 GRENOBLE

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Introduction St. Catherine's Chapel Lemiers, The Netherlands Wall paintings Moisture problems HAMBase simulations indoor climate Comsol simulations water uptake Conclusions

St. Catherine's Chapel Lemiers

/ Departement of Built 2015 GRENOBLE

Wall paintings

Moisture problems

COMSOL CONFERENCE / Departement of Built 2015 GRENOBLE

Moisture content measurements

/ Departement of Built

PAGE 5 22-10-2015

Water in crypt

Flooding of creeks nearby

COMSOL CONFERENCE / Departement of Built 2015 GRENOBLE

Restoration of the wall paintings

Continuous measurements

HAMBase simulations indoor climate

Inverse modeling

Comsol simulations water uptake

$$\frac{\partial w}{\partial t} = div D_w grad w$$

For which the diffusion coefficient D_w

varies with the moisture content:

$$D_w = rac{\delta_a}{\mu} \; p_{sat} rac{1}{\xi}$$
 for vapour transfer

 $D_w = \frac{k_m}{\pi}$

for liquid water transfer

Comsol simulations water uptake

$$\frac{\partial w}{\partial t} = div \, D_w \, grad \, w$$

brick: $\rho_{\text{brick}} = 1529 \text{ kg/m}^3$ $D_w = 2.1 \cdot 10^{.9} \text{exp}(0.0316 \text{ w}) \text{ m}^2/\text{s}$ Critical moisture content: $w_{\text{cr}} = 100 \text{ kg/m}^3$

/ Departement of Built

Temperature

PAGE 14

Moisture content

Conclusions

- Flooding of chapel by creek water
- High groundwater level
- Water in crypt
- Water uptake by walls
- Drying at internal and external surfaces of walls
- Relatively high vapor diffusion resistance painting
- Moisture source in chapel
- Measure:

/ Departement of Bui

Injection of foundation with water-repellent chemical liquid omsol CONFERENCE 2015 GRENOBLE

22-10-2015

PAGE 16