

Simulation Tests of the Constitutive Equation of a Nonlinear Viscoelastic Fluid

SZEG

SCIENTIARUM SZEGEDIENSIS

JNIVERSITAS

 A. Czirják, Z. Kőkuti, G. Tóth-Molnár, G. Szabó University of Szeged, Hungary
 P. Ailer, L. Palkovics Kecskemét College, Hungary

> COMSOL CONFERENCE 2015 GRENOBLE

Outline

- Rheometry of viscoelastic fluids
 - Measurements with a rotational rheometer
 - Motivations for FEM modeling
- Simulation of shear flow rheometry with COMSOL Multiphysics
- Results:
 - Normal force simulation
 - Rod climbing (Weissenberg effect) simulation

- Shear flow tests: non-Newtonian flow
- Small Amplitude Oscillation Shear (SAOS) tests: loss and storage modulus, linear properties
- Large Amplitude Oscillation Shear (LAOS) tests: anharmonic analysis, nonlinear viscoelastic properties

- Shear flow tests: non-Newtonian flow
- Small Amplitude Oscillation Shear (SAOS) tests: loss and storage modulus, linear properties
- Large Amplitude Oscillation Shear (LAOS) tests: anharmonic analysis, nonlinear viscoelastic properties

Concentric Cylinder (CC)

- Silicone oil, (Polydimethylsiloxane, PDMS)
- High viscosity: 100 2000 Pa*s
- Viscoelastic fluid: 3 5 Maxwell elements for lumped parameters models

 n _k

- Shear thinning, Cox-Merz rule, Nonlinear viscoelasticity
- Normal force measurements with CP geometry, Weissenberg-effect

Weissenberg effect:

Weissenberg effect:

Weissenberg effect:

Motivations for a FEM simulation

• Which 3D constitutive equation (e.g. UCM, Jeffreys, White-Metzner, Oldroyd, ...) is the best to model the fluid?

• How much is the effect of rod climbing on the measured viscosity?

Simulation of shear flow with COMSOL

CP-model:

Cone-Plate (CP)

Concentric Cylinder (CC)

Simulation of shear flow with COMSOL

- Swirl flow with two phases: silicone oil and air, surface tension and gravity included ->
 2D axial sym., level set
- Silicone oil: White-Metzner
 with 3 elements ->
 2D PDE modes (cyl. coo.)

SZT=

Simulation of shear flow with COMSOL

- Swirl flow with two phases: silicone oil and air, surface tension and gravity included ->
 2D axial sym., level set
- Silicone oil: White-Metzner with 3 elements ->
 2D PDE modes (cyl. coo.)

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u}\nabla)\mathbf{u} = \nabla \left[-p\mathbf{I} + \mathbf{\tau}\right] + \mathbf{F}$$
$$\mathbf{\tau} = \sum_{j=1}^{n} \mathbf{\tau}_{j}$$

$$\boldsymbol{\tau}_{j} + \frac{\eta_{j}(|\dot{\gamma}|)}{k_{j}} \boldsymbol{\tau}_{j} = -\eta_{j}(|\dot{\gamma}|) \cdot \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}\right]$$

$$\stackrel{\nabla}{\mathbf{\tau}}_{j} \equiv \frac{\partial \mathbf{\tau}_{j}}{\partial t} + (\mathbf{u}\nabla)\mathbf{\tau}_{j} - [\mathbf{\tau}_{j}(\nabla\mathbf{u}) + (\nabla\mathbf{u})^{T}\mathbf{\tau}_{j}]$$

Simulation of shear flow with COMSOL

- Boundary conditions
- Variable scalings
- Time dependent solution, initialization
- Ramping up the azimuthal velocity
- Ramping up the coupling (Volume Force)
- Many variables, large RAM

	File Edit View Options Help	
	□┣◳兽।\$\$\$ @ ◙ ▋ ▮▾ ○▾	№
	T Model Builder	- 8
	Global Definitions	
	Model 1 (mod1)	
	Definitions	
	K Geometry 1	
	Materials	
	Laminar Two-Phase Flow, Level Set (tpf)	
	Fluid Properties 1	
	Barrial Symmetry 1	
	Be Wall 1	
	E Initial Interface 1	
	Initial Values 1	
	Initial Values 2	
	⇔ Wall 2	
	Volume Force 1 Convite 1	
	□ Gravity 1 ⊕ Inlet 1	Ξ
	⊕ Inlet 2	
	⊕ Symmetry 1	
	Gymnedy 1 Generation 1	
	$ ightarrow \Delta d$ General Form PDE (g)	
	▷ Δ^{\dagger} General Form PDE 2 (g2)	
\	▷ △d General Form PDE 3 (g3)	
	🛛 🖾 Mesh 1	
'	🖻 罃 Study 1	
	🔺 🎬 Study 2	
	🖄 Step 1: Transient Initialization	
	🕰 Step 2: Time Dependent	
	Solver Configurations	
	Results	-

Simulation of shear flow with COMSOL

• Reference simulation: Newtonian fluid, torque

Results – CP

Cone-Plate (CP)

CP-model:

Results – CP: Normal force

• Pressure distribution on the upper (conical) surface

Results – CP: Normal force

Results – CC

Concentric Cylinder (CC)

CC-model:

Results – CC: Rod climbing

Results – CC: Rod climbing

SZT: I

Results – CC: Torque, viscosity

Conclusions

- COMSOL is able to give the solution of this difficult problem
- Normal force values from CP simulation are in good agreement with measurements
- Rod-climbing in CC simulation is close to reality, computed changes in torque values mostly cancel, therefore viscosity measurements are not disturbed

Thank you for your attention!