Simulation Tests of the Constitutive Equation of a Nonlinear Viscoelastic Fluid

A. Czirják, Z. Kőkuti, G. Tóth-Molnár, G. Szabó University of Szeged, Hungary
P. Ailer, L. Palkovics
Kecskemét College, Hungary

CONFERENCE
2015 GRENOBLE

Outline

- Rheometry of viscoelastic fluids
- Measurements with a rotational rheometer
- Motivations for FEM modeling
- Simulation of shear flow rheometry with COMSOL Multiphysics
- Results:
- Normal force simulation
- Rod climbing (Weissenberg effect) simulation

Rheometry of viscoelastic fluids

- Shear flow tests: non-Newtonian flow
- Small Amplitude Oscillation Shear (SAOS) tests: loss and storage modulus, linear properties
- Large Amplitude Oscillation Shear (LAOS) tests: anharmonic analysis, nonlinear viscoelastic properties

Rheometry of viscoelastic fluids

- Shear flow tests: non-Newtonian flow
- Small Amplitude Oscillation Shear (SAOS) tests: loss and storage modulus, linear properties
- Large Amplitude Oscillation Shear (LAOS) tests: anharmonic analysis, nonlinear viscoelastic properties

Concentric Cylinder (CC)

Rheometry of viscoelastic fluids

Rheometry of viscoelastic fluids

- Silicone oil, (Polydimethylsiloxane, PDMS)
- High viscosity: 100 - 2000 Pa*s
- Viscoelastic fluid: 3-5 Maxwell elements for lumped parameters models

- Shear thinning, Cox-Merz rule, Nonlinear viscoelasticity
- Normal force measurements with CP geometry, Weissenberg-effect

Rheometry of viscoelastic fluids

Weissenberg effect:

Rheometry of viscoelastic fluids

Weissenberg effect:

Rheometry of viscoelastic fluids

Weissenberg effect:

Motivations for a FEM simulation

- Which 3D constitutive equation (e.g. UCM, Jeffreys, White-Metzner, Oldroyd, ...) is the best to model the fluid?
- How much is the effect of rod climbing on the measured viscosity?

Simulation of shear flow with COMSOL

CP-model:

CC-model:

Concentric
Cylinder (CC)

Simulation of shear flow with COMSOL

- Swirl flow with two phases: silicone oil and air, surface tension and gravity included -> 2D axial sym., level set
- Silicone oil: White-Metzner with 3 elements ->
2D PDE modes (cyl. coo.)

Simulation of shear flow with COMSOL

Swirl flow with two phases:
silicone oil and air, surface tension and gravity included ->

$$
\rho \frac{\partial \mathbf{u}}{\partial t}+\rho(\mathbf{u} \nabla) \mathbf{u}=\nabla[-p \mathbf{I}+\boldsymbol{\tau}]+\mathbf{F}
$$

2D axial sym., level set

- Silicone oil: White-Metzner with 3 elements ->
2D PDE modes (cyl. coo.)

$$
\stackrel{\nabla}{\boldsymbol{\tau}}_{j} \equiv \frac{\partial \boldsymbol{\tau}_{j}}{\partial t}+(\mathbf{u} \nabla) \boldsymbol{\tau}_{j}-\left[\boldsymbol{\tau}_{j}(\nabla \mathbf{u})+(\nabla \mathbf{u})^{T} \boldsymbol{\tau}_{j}\right]
$$

Simulation of shear flow with COMSOL

- Boundary conditions
- Variable scalings
- Time dependent solution, initialization
- Ramping up the azimuthal velocity
- Ramping up the coupling (Volume Force)
- Many variables, large RAM

Simulation of shear flow with COMSOL

- Reference simulation: Newtonian fluid, torque

Results - CP

CP-model:

Results - CP: Normal force

- Pressure distribution on the upper (conical) surface

Results - CP: Normal force

Results - CC

CC-model:

Results - CC: Rod climbing

Results - CC: Rod climbing

Results - CC: Torque, viscosity

Total torque

Conclusions

- COMSOL is able to give the solution of this difficult problem
- Normal force values from CP simulation are in good agreement with measurements
- Rod-climbing in CC simulation is close to reality, computed changes in torque values mostly cancel, therefore viscosity measurements are not disturbed

Thank you for your attention!

