Design of FIDT for 3D Analysis of MEMS Based Gas Sensor Using SAW Technology

Department of Control Systems,
Electrical & Electronics Engineering,
St. Mary’s Group of Institutions-Hyderabad,
Jawaharlal Nehru Technological University-Hyderabad, Telangana.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
CONTENTS

1. Introduction
2. Applications
3. Significance
4. Theory of Operation
5. COMSOL Multiphysics
6. Model Design
7. Simulation
8. Discussion
9. Results
10. Conclusion

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
1. INTRODUCTION

SAW
Surface Acoustic Wave

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
2. APPLICATIONS

Industry: Passive wireless measurement of Temperature, Pressure, Strain, Vibrations.

Energy: Switch gear temperature monitoring, Wind turbine generator monitoring, Bearing Temperature Control in Electrical equipments.

Power Plant: Detection of dangerous gases like sulphur dioxide near chimney/ stack.

Communication: Mobile phones, as filters, oscillators, resonators, RFID sensors etc.

Research: Microfluidics, micropumps, micromixers, micro actuators, LOC, Inkjet Droplet based applications.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Chemical Plants: Detection of gases like CO₂, CO, SO₂, O₂, O₃, H₂, Ar, N₂, NH₃ & volatile organic gases like carbon tetrachloride & trichloroethylene, etc.

Home Appliances: Cookware wireless monitoring, Wireless food probes, Wireless temperature control on rotating parts.

Biomedical: Patient monitoring / diagnostic sensors for lung cancer, biomarkers, MRI etc.

Laboratory: pH Levels, Biochemical sensors.

Automation: Production line monitoring, Conveyors tunnel oven, Roll temperature control.

Automobile: Humidity, wing deflection controlling, IVHM in Aerospace / Space vehicles.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
3. SIGNIFICANCE

- Passive,
- Wireless,
- Reliability,
- Portability,
- Ruggedness,
- Light Weight,
- Miniature size,
- High sensitivity,
- Faster response,
- Simplistic design,
- Mass- production,
- Variety of measurable phenomena.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
4. THEORY OF OPERATION

Components:

1. IDT, 2. Sensitive film, 3. Piezoelectric material
SURFACE ACOUSTIC WAVE GAS SENSOR

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
5. COMSOL Multiphysics

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
6. Model Design

Conventional 3D Model

3D cut model

2D Base Model

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Modeled SAW sensor design using FIDT

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Materials:

- Rectangular shaped electrodes made of **Aluminum**.
- Covered with **Polyisobutylene** (PIB) film.
- **Lithium Niobate** (LiNbO3) piezoelectric substrate.
- **Dichloromethane** (DCM)- CH2CL2 gas.

Dimensions:

- Substrate dimensions 6 μm x 4 μm x 1 μm
- PIB material of radius 1 μm, height 0.5 μm
- Electrode dimensions are 0.25 μm x 1 μm x 0.5 μm.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
<table>
<thead>
<tr>
<th>Description</th>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pressure</td>
<td>p</td>
<td>101.325[kPa]</td>
</tr>
<tr>
<td>Gas constant</td>
<td>R</td>
<td>8.3145[Pam3/(Kmol)]</td>
</tr>
<tr>
<td>DCM concentration in air</td>
<td>$c_{\text{DCM}}_{\text{air}}$</td>
<td>$100e-6p/(RT)$</td>
</tr>
<tr>
<td>Molar mass of DCM</td>
<td>M_{DCM}</td>
<td>84.93[g/mol]</td>
</tr>
<tr>
<td>PIB/air partition constant for DCM</td>
<td>K</td>
<td>30.346</td>
</tr>
<tr>
<td>Mass concentration of DCM in PIB</td>
<td>$\rho_{\text{DCM}}_{\text{PIB}}$</td>
<td>0.010534kg/m3</td>
</tr>
<tr>
<td>Density of PIB</td>
<td>ρ_{PIB}</td>
<td>918.00kg/m3</td>
</tr>
<tr>
<td>Young's modulus of PIB</td>
<td>E_{PIB}</td>
<td>10[Gpa]</td>
</tr>
<tr>
<td>Poissons ratio of PIB</td>
<td>ν_{PIB}</td>
<td>0.48</td>
</tr>
<tr>
<td>Relative permittivity of PIB</td>
<td>ε_{PIB}</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
7. Simulation

➢ Analysis of Surface Deformation.

➢ Calculation of Electrical Potential.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Modes of propagation:

S0 LAMB MODE

A1 LAMB MODE

SAW MODE

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
8. DISCUSSION

Deformed shaped plot of SAW model at Resonance.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Deformed shaped plot of SAW model at Anti-Resonance.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Electric potential distribution at Resonance.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Electric potential distribution at Anti-Resonance.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
9. RESULTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Focused IDT Model</th>
<th>Conventional Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Displacement at Resonance</td>
<td>2.2193 X 10(^{-3})</td>
<td>1.855 X 10(^{-3})</td>
</tr>
<tr>
<td>Surface Displacement at Anti-Resonance</td>
<td>4.7706 X 10(^{-3})</td>
<td>2.487 X 10(^{-3})</td>
</tr>
<tr>
<td>Electrical Potential at Resonance</td>
<td>5.9733</td>
<td>5.9748</td>
</tr>
<tr>
<td>Electrical Potential at Anti-Resonance</td>
<td>5.6031</td>
<td>5.3614</td>
</tr>
</tbody>
</table>

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
10. CONCLUSION

- MEMS based SAW gas sensor is designed using Focused-IDT design for analysis of the resultant characteristics in a 3D model.

- FIDT design helps in concentration of more amount of acoustic energy on to the poly chemical coating layer.

- Enhanced results reflected the utility of this as an industrial gas sensor with better sensitivity.

- Significant to design new intense microacoustic sources, for instance for enhanced acouto-optical interactions.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.
THANK YOU

COMSOL CONFERENCE
2015 PUNE