

Design of FIDT for 3D Analysis of MEMS

Based Gas Sensor Using SAW Technology

Department of Control Systems,

Electrical & Electronics Engineering,

St. Mary's Group of Institutions-Hyderabad,

Jawaharlal Nehru Technological University-Hyderabad, Telangana.

CONTENTS

- 1. Introduction
- 2. Applications
- 3. Significance
- 4. Theory of Operation
- 5. COMSOL Multiphysics
- 6. Model Design
- 7. Simulation
- 8. Discussion
- 9. Results

10.Conclusion

1. INTRODUCTION

SAW Surface Acoustic Wave

COMSOL CONFERENCE

2015 PUNE

2. APPLICATIONS

Industry: Passive wireless measurement of Temperature, Pressure, Strain, Vibrations.

Energy: Switch gear temperature monitoring, Wind turbine generator monitoring, Bearing Temperature Control in Electrical equipments.

<u>Power Plant:</u> Detection of dangerous gases like sulphur dioxide near chimney/ stack.

<u>Communication:</u> Mobile phones, as filters, oscillators, resonators, RFID sensors etc.

<u>Research</u>: Microfluidics, micropumps, micromixers, micro actuators, LOC, Inkjet Droplet based applications.

Delta II

<u>Chemical Plants</u>: Detection of gases like CO2, CO, SO2, O2, O3, H2, Ar, N2, NH3 &volatile organic gases like carbon tetrachloride & trichloroethylene, etc.

HomeAppliances:Cookwarewirelessmonitoring,Wirelessfoodprobes,Wirelesstemperature control on rotating parts.WirelessWireless

Biomedical: Patient monitoring / diagnostic sensors for lung cancer, biomarkers, MRI etc.

Laboratory: pH Levels, Biochemical sensors.

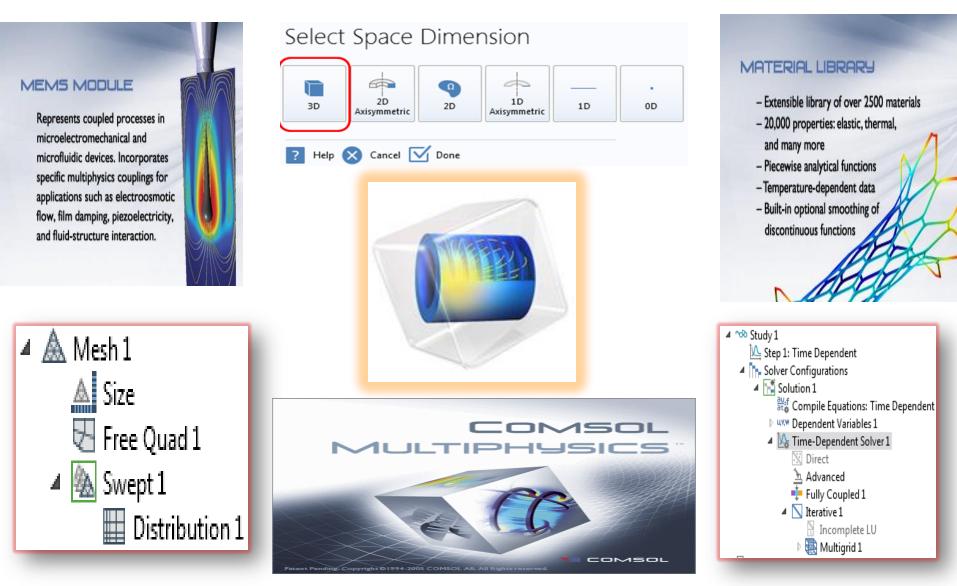
<u>Automation:</u> Production line monitoring, Conveyors tunnel oven, Roll temperature control.

Automobile: Humidity, wing deflection controlling, IVHM in Aerospace / Space vehicles.

3. SIGNIFICANCE

≻Passive, ≻Wireless, ► Reliability, ≻Portability, ≻Ruggedness, ≻Light Weight, ≻Miniature size, ≻High sensitivity, ≻Faster response, Simplistic design, ≻Mass- production, ≻ Variety of measurable phenomena.

4. THEORY OF OPERATION


Components:

1. IDT, 2. Sensitive film, 3. Piezoelectric material

5. COMSOL Multiphysics

3D cut model

y Z x

2D Base Model

Conventional Design of IDT

Focused Design of IDT

Modeled SAW sensor design using FIDT

<u>Materials:</u>

≻Rectangular shaped electrodes made of Aluminum.

Covered with **Polyisobutylene** (PIB) film.

Lithium Niobate (LiNbO3) piezoelectric substrate.

Dichloromethane (DCM)- CH2CL2 gas.

<u>Dimensions</u>:

- Substrate dimensions 6 μm x 4 μm x 1 μm
- >PIB material of radius 1 μ m, height 0.5 μ m

Electrode dimensions are 0.25 μ m x1 μ m x 0.5 μ m.

Excerpt from the Proceedings of the COMSOL Conference 2015 PUNE.

ID1

SAV

Description	Expression	Value
Air pressure	р	101.325[kPa]
Gas constant	R	8.3145[Pa*m^3/(K*mol)]
DCM concentration	c_DCM_	100e-6*p/(R*T)
in air	air	
Molar mass of	M_DCM	84.93[g/mol]
DCM		
PIB/air partition	K	30.346
constant for DCM		
Mass concentration	rho_DCM_	0.010534kg/m ³
of DCM in PIB	PIB	
Density of PIB	rho_PIB	918.00kg/m ³
Young's modulus of	E_PIB	10[Gpa]
PIB		
Poissons ratio of	nu_PIB	0.48
PIB		
Relative	eps_PIB	2.2
permittivity of PIB		

7. Simulation

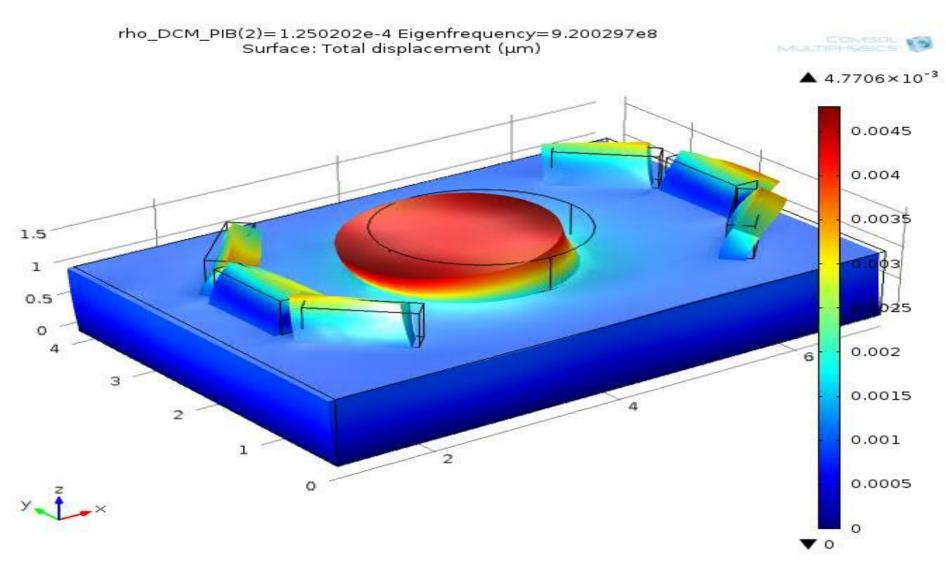
≻Analysis of Surface Deformation.

≻Calculation of Electrical Potential.

8. DISCUSSION

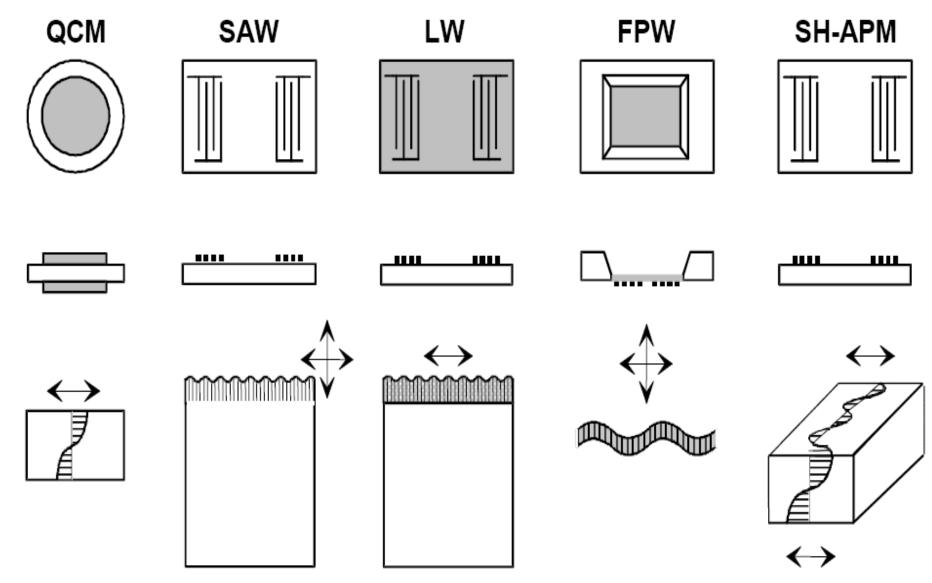
rho_DCM_PIB(2)=1.250202e-4 Eigenfrequency=8.760651e8 Surface: Total displacement (µm)

COMSOL CONFERENCE


2015 PUNE

Deformed shaped plot of SAW model at Resonance.

Deformed shaped plot of SAW model at Anti-Resonance.


Electric potential distribution at Resonance.

Electric potential distribution at Anti-Resonance.

9. RESULTS

Parameter	Focused IDT Model	Conventional Model
Surface	2.2193	1.855
Displacement at Resonance	X 10 ⁻³	X 10 ⁻³
Surface	4.7706	2.487
Displacement at Anti - Resonance	X 10 ⁻³	X 10 ⁻³
Electrical Potential at Resonance	5.9733	5.9748
Electrical Potential at Anti - Resonance	5.6031	5.3614

10. CONCLUSION

➤ MEMS based SAW gas sensor is designed using Focused-IDT design for analysis of the resultant characteristics in a 3D model.

➢FIDT design helps in concentration of more amount of acoustic energy on to the poly chemical coating layer.

Enhanced results reflected the utility of this as an industrial gas sensor with better sensitivity.

Significant to design new intense microacoustic sources, for instance for enhanced acouto-optical interactions.

THANK YOU

COMSOL CONFERENCE 2015 PUNE