Finite Element Evaluation of *J*-integral in 3D for Nuclear Grade Graphite Using COMSOL-Multiphysics

Presented by

Awani Bhushan

S.R.F. (B.R.N.S, DAE, India) Research Scholar Department of Mechanical Engineering IIT (BHU) Varanasi

COMSOL CONFERENCE 2015 PUNE

Organization of presentation

>Introduction

- ≻Finite Element model
- Bimodular formulation
- Results and discussion

Conclusion

Introduction

Advantages of nuclear Energy ≻Capable of full-fill the energy crisis ≻Less Polluting ≻Reliable ≻Economical

Figure: Distribution of energy in India (Wikipedia)

Evolution of Nuclear reactor

Revolutionary Generation III+ Designs Generation III Evolutionary Designs Generation II Generation I Advanced LWRs Commercial Power Early Prototypes - Safer - Sustainable - ABWR - Economical - ACR1000 - More - CANDU 6 - AP1000 Proliferation - PWRs - System 80+ - APWR Resistant and - Shippingport - AP600 - BWRs Physically - EPR - Dresden Secure - CANDU - ESBWR - Magnox 1950 1960 1970 1980 1990 2000 2010 2020 2030 . . н • 1 Т T т . L н Genl Genll Gen III+ GenIV

Awani Bhushan, IIT (BHU) Varanas

Generation IV

Generation IV Nuclear Reactor

Awani Bhushan, IIT (BHU) Varanasi

Nuclear Grade Graphite

USE

- Moderator
- ➢ Built material
- ➤Fuel Element

Properties

- Stable at high temperature
- Bimodular in nature
- ≻Brittle

Nuclear Grade Graphite (contd..)

Modeling

- ➢ Bi-moderator Finite Element formulation
 - Cracked three point bend specimen

Objective

- To evaluate
 - > J-integral for a range of E_t/E_c ratio.
 - The effect of bi-modularity on stress region belonging to tension and compression.

Finite Element Model

Awani Bhushan, IIT (BHU) Varanas

Problem Formulation

Figure : Single edge-crack bend specimen having point load at the middle

Mesh Distribution

3D mesh whole geometry

3D mesh near crack tip

Discretized into 14520 hexahedral elements present in 3D mesh

Awani Bhushan, IIT (BHU) Varanasi

Bi-Modular formulation

Young's Modulus of elasticity in tension /compression is controlled by a step function. Stress strain relation is defined by:

$$\varepsilon = \left(\frac{U(\sigma)}{E_{T}} + \frac{U(-\sigma)}{E_{C}}\right)\sigma$$

Where U(x) is a **step function**, and U(x)=1, when x>0, otherwise U(x)=0

COMSOL implementation

Steps:

- > Define a step function for Young's modulus of elasticity.
- Built the geometry.
- Define boundary condition.
- Define the weak contribution. test(p)*(p-solid.pm)

solid.pm =
$$\left(-\frac{\sigma_{xx} + \sigma_{yy} + \sigma_{zz}}{3}\right)$$

- Define auxiliary dependent variable p.
- Solve the model.
- Define path and area to evaluate the J-integral value in 3D.
- > Define the integral and differential expression for J-integral evaluation.

J-integral for 3D (R.H. Dodds, 1987)

$$J_{C1}(s) = \prod_{\Gamma} W^{e} n_{1} d\tau \qquad \qquad J_{A1}(s) = -\prod_{A} W_{,1}^{p} dA$$

$$J_{C2}(s) = \prod_{\Gamma} W^{p} n_{1} d\tau \qquad \qquad J_{A2}(s) = \prod_{A} \left(\sigma_{ij} \varepsilon_{ij,1}^{p} \right) dA \qquad (i=1,2,3)$$

$$J_{C3}(s) = - \prod_{\Gamma} u_{i,1} T_i d\tau \quad (i=1,2,3) \qquad J_{A3}(s) = - \prod_{A} (\sigma_{i3} u_{i,1})_{,3} dA \qquad (i=1,2,3)$$

$$J(s) = JC_1(s) + JC_2(s) + JC_3(s) + JA_1(s) + JA_2(s) + JA_3(s)$$

For, Elastic region only

$$J(s) = J_{C1}(s) + J_{C3}(s) + J_{A3}(s)$$

$$J(s) = \prod_{\Gamma} W^{e} n_{1} d\tau - \prod_{\Gamma} u_{i,1} T_{i} d\tau - \prod_{A} (\sigma_{i3} u_{i,1})_{,3} dA$$

Crack front

Awani Bhushan, IIT (BHU) Varanasi

_,x3

Results & Discussion

Awani Bhushan, IIT (BHU) Varanas

Contour for J-integral evaluated

Fig: Contour for 3D J-integral

Awani Bhushan, IIT (BHU) Varanasi

Normal stress distribution in X-direction

near crack tip

Awani Bhushan, IIT (BHU) Varanas

Von-Mises stress distribution

near crack tip

Awani Bhushan, IIT (BHU) Varanas

Young's Modulus plot

Awani Bhushan, IIT (BHU) Varanas

Path-independent J-integral in 3D

Fig.: Effect of Et/Ec ratio on *J*-integral for three-point bend specimen in 3D

Awani Bhushan, IIT (BHU) Varanasi

J-integral in 3D

Fig.: Variation of J-integral versus different loading for different material having a range of E_t/E_c ratio.

COMSOL CONFERENCE

2015

Conclusions

- The effect of bimodularity on the stresses, and *J*integral values for nuclear grade graphite beam has been studied in 2D and 3D.
- It was found that the ratio of E_t/E_c has a significant effect on the beam deflection, axial normal stresses, and the crack extension force on the crack tip.
- This suggests that the bimodularity effect on nuclear grade graphite is significant and should be taken into account in the design process.

References

- Nemeth N.N., Walker A., Baker E., Murthy P., Bratton R. (2013), "Large-Scale Weibull Analysis of H-451 Nuclear-Grade Graphite Rupture Strength," Carbon, 58, 208–225.
- Nemeth N.N., Walker A., Baker E., Murthy P., Bratton R. (2012), "Large-Scale Weibull Analysis of H 451 Nuclear- Grade Graphite Specimen Rupture Data," NASA/TM—2012-217409.
- Tabaddor F. (1981), "Two-Dimensional Finite Element Analysis of Bi-Modulus Materials," Fibre Science and Technology, 14, 229–240.
- El-Tahan W.W., Staab G.H., Advani S.H., Lee J.K. (1989), "Structural analysis of bimodular materials," Journal of Engineering Mechanics, 115(5), 963–981.
- Saint-Venant B. (1864), "Notes to Navier's Resume des lecons dela resistance des corps solids," 3rd Ed., Paris, 175.
- Timoshenko S. (1941), "Strength of materials, Part 2." Advanced Theory and Problems, 2nd Ed., Van Nostrand, Princeton, N.J., 362–369.
- Marin J. (1962), "Mechanical behavior of engineering materials," Prentice- Hall, Englewood Cliffs, N.J., 86–88.
- Ambartsumyan S.A. (1965), "The axisymmetric problem of circular cylindrical shell made of materials with different stiffness in tension and compression." Izvestia Akademiya Nauk SSSR. Meckanika,. (4), 77-85; English Translation (1967), NTIS Report FTD-HT-23-1055-67, Nat. Tech. Info. Service, Springfield, Va.
- Ambartsumyan S.A. (1966), "Equations of the plane problem of the multimodulus theory of elasticity," Izvestiya Akademii Nauk Armanskoi SSR, Mekhanika, 19(2), 3-19. Translation available from the Aerospace Corp., El Segundo, Calif, as LRG-67-T-14.
- Ambartsumyan, S.A. (1969), "Basic equations and relations in the theory of elasticity of anisotropic bodies with different moduli in tension and compression." Inzhenemyi Zhurnal, Mekhanika Tverdogo Tela, 3, 51-61. Translation available from the Aerospace Corp., El Segundo, Calif, as LRG-70-T-1.
- Bert, C.W. (1977), "Models for fibrous composites with different properties in tension and compression," Eng. Mat. and Tech. Trans., ASME, 99H, Oct., 344- 349.
- Bert, C.W. (1978), "Recent advances in mathematical modeling of the mechanics of bimodulus, fiber-reinforced materials," Proc. 15th Annual Meeting, Society of Eng. Science, Gainesville, Fla., Dec, 101-106.
- Green, A.E., and Mkrtichian, J.Z. (1977), "Elastic solids with different moduli in tension and compression," J. Elasticity, 7(4), 369-386.
- Isabekian, N.G., Khachatryan, A.A. (1969), "On the multimodulus theory of elasticity of anisotropic bodies in plane stress state," Ivestiya Akademii Nauk Armianskoi SSR, Mekhanika, 22(5), 25-34. Translation available from R. M. Jones.
- Jones, R.M. (1971), "Buckling of stiffened multilayered circular cylindrical shells with different orthotropic moduli in tension and compression," AIAA Journal, 9(5), 917-923.
- Jones, R.M. (1977), "Stress strain relations for materials with different moduli in tension and compression," AIAA Journal, 15(1), 16-23.
- Iwase T., Hirashima K. (2000), "High-accuracy analysis of beams of bimodulus materials," Journal of Engineering Mechanics, (126)149-156.
- Rice, J.R. (1968), "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks" Journal of Applied Mechanics, 35, 379–386.
- General Atomics (1988), "Graphite design handbook," DOE-HTGR-88111
- COMSOL-multiphysics, Version 4.4, (2013).

Acknowledgements

The authors wish to gratefully acknowledge the financial support for this research provided by BRNS under Grant No. 2011/36/62-BRNS with Indian Institute of Technology (Banaras Hindu University).

