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Introduction 
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Figure: Distribution of energy in India (Wikipedia) 

Awani Bhushan, IIT (BHU) Varanasi 3 



Awani Bhushan, IIT (BHU) Varanasi 4 

Evolution of Nuclear reactor 



Generation IV  Nuclear Reactor  
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USE 
Moderator  

Built material 

Fuel Element 

Properties 
Stable at high temperature 

Bimodular in nature 

Brittle 

 

 

Figure 4: Bi-modulus material having 

different Young's Modulus in tension 

and compression 
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Nuclear Grade Graphite  



Modeling 
Bi-moderator Finite Element formulation 

Cracked three point bend specimen 

Objective 
 To evaluate  

 J-integral for a range of Et/Ec ratio. 

 The effect of bi-modularity on stress region belonging 
to tension and compression. 
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Nuclear Grade Graphite (contd..)  



 

Finite Element Model 
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Figure : Single edge-crack bend specimen having point load at the middle 

Crack length 5mm 
Specimen 
length=250mm 
height=25mm 
Load P= 500 N 
Et=7.14 757GPa 
Ec=3.9145 GPa 
(Graphite design 
handbook) 
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Problem Formulation 



Discretized into 14520 hexahedral elements present in 3D mesh 

Mesh Distribution 
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3D mesh near crack tip 3D mesh whole geometry 



 
 
 Young’s Modulus of elasticity in tension /compression is controlled by a step 

function.  Stress strain relation is defined by: 
 
 
 
 

       Where U(x) is a step function, and U(x)=1, when x>0, otherwise U(x)=0 
         

 
 
 
 

             
                                   

Bi-Modular formulation 
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Steps: 
 Define a step function for Young’s modulus of elasticity.  
 Built the geometry. 
 Define boundary condition. 
 Define the weak contribution. 
          test(p)*(p-solid.pm) 
 
 
 
 Define auxiliary dependent variable p. 
 Solve the model. 
 Define path and area to evaluate the J-integral value in 3D. 
 Define the integral and differential expression for J-integral evaluation. 

.
3

x x y y z z

so l id p m
  

  
 

  

COMSOL implementation 
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J-integral for 3D (R.H. Dodds, 1987) 
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Results & Discussion 

 

 



Contour for J-integral evaluated 

Awani Bhushan, IIT (BHU) Varanasi 15 

Fig: Contour for 3D J-integral 



Normal stress distribution in X-direction 
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 near crack tip 



Von-Mises stress distribution  
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 near crack tip 



Young's Modulus plot  
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Path-independent J-integral in 3D 

Fig.: Effect of  Et/Ec ratio on J-integral for three-point bend specimen in 3D 
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Fig.: Variation of J-integral versus different loading for different material 
having a range of Et/Ec ratio. 
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J-integral in 3D  
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Conclusions 

• The effect of bimodularity on the stresses, and J-
integral values for nuclear grade graphite beam has 
been studied in 2D and 3D.  

• It was found that the ratio of Et/Ec has a significant 
effect on the beam deflection, axial normal stresses, 
and the crack extension force on the crack tip.  

• This suggests that the bimodularity effect on nuclear 
grade graphite is significant and should be taken into 
account in the design process. 
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