
Flow-Induced Vibration Analysis of Supported Pipes with a Crack 

Jin-Hyuk Lee
1
*, Samer Masoud Al-Said

2,3
 

1
Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE, 

2
Department of 

Mechanical Engineering, Jordan University of Science and Technology, Irbid, Jordan, 
3
visiting professor 

at Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE 

*Corresponding author: Department of Mechanical Engineering, American University of Sharjah, PO

Box 26666, Sharjah, UAE, jinhyuk@aus.edu

Abstract: In this paper, the effect of a crack to 

the flow-induced vibration characteristics of 

supported pipes is investigated based on 

vibration method. In order to estimate the crack 

location and depth in the pipe, we need to utilize 

the variation of the difference between the 

natural frequencies of the pipe conveying fluid 

with and without crack. The pipe is fluid loaded 

via interaction with the fluid. Fluid loading has 

two main effects on vibrating pipes: first, the 

fluid mass loads the pipe, meaning that the 

pipe’s natural frequencies are altered due to 

added mass. Secondly, viscous loading is 

provided to the pipe near the wall due to shear 

force between the pipe and the fluid. In 

COMSOL Multiphysics® Module, the 

Aeroacoustics and Structural physics have been 

used for frequency domain analysis. Fully 

developed laminar flow profile is used to 

simulate the fluid flow inside a pipe. Perfectly 

Matched layer is used to simulate the unbounded 

boundary to purely capture the fluid and the pipe 

system without standing waves; hence the mode 

shapes are expected to remain unchanged for 

pipes conveying fluid form ones attained from 

pipes alone.  

Keywords: aeroacoustic, crack, fluid-flow, 

natural frequency, vibration 

1. Introduction

Flow-induce vibration analysis of pipes 

conveying fluid had gained its attention as the 

pipes are widely used in many industrial areas 

such as skyscraper cooling systems, petrol and 

gas transportation systems. Over the past 

decades, many studies have been conducted on 

the dynamic characteristics of pipeline systems 

subject to different loading conditions [1-3]. 

These pipes working hard on our mundane life 

would be cracked as a result of various loads 

while conveying fluid, which could lead 

catastrophic event if not prevented. Hence, 

analyzing the vibrational behavior of the cracked 

pipes would be practically important. Previously 

the crack identification algorithm for a beam has 

been developed and verified against the 

experimental as well as finite element (FE) 

analysis results [4-7]. However, published work 

of the vibrational study on the cracked pipes 

conveying fluid flow is rather scarce. 

In this paper the vibrational behavior of the 

pipe conveying fluid flow with cracks is 

numerically investigated based on vibration 

method. Simulated results will be used to help to 

model the similar system mathematically.  

2. Flow-Induced Pipe with Crack Model

In this section an overall mathematical model 

describing vibration behavior of a cracked fluid-

conveying pipe. The cracked beam can be 

modeled as two uniform Euler-Bernoulli beams 

connected by a massless torsional spring to 

consider rotational discontinuity in beam’s 

deflection at the crack location. In order to 

combine global effects of crack and vibration 

characteristics, the assumed mode method and 

the Lagrange method are used [4]. 

The kinetic energy of the beam is obtained as 

follows: 
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, where Tpipe is kinetic energy of the pipe, m is 

mass per unit length of the pipe, xc is the distance 

to the crack location, y is the deflection of the 

pipe, and L is the total length of the pipe. 
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, where Tfluid is kinetic energy due to fluid inside 

the pipe, M is mass per unit length of fluid, and 
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U is fluid velocity. The potential energy of the 

pipe due to strain energy is  
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, where E is modulus of elasticity, I is area 

moment of inertia, KR is spring coefficient due to 

crack and yk (k = 1, 2) represents transverse 

displacement [8]. The transverse displacement 

takes the form of a linear combination of 

admissible function ϕki(x), and a generalized 

coordinate di(t) as follows 
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
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, where the subscript k denotes the number of 

divided pipes due to crack [8]. 

Substituting Eq. (1) – Eq. (3) into Lagrange’s 

equation and considering an external forcing 

term, the equation of motion can be written as: 

    extFqKqM 


   (5) 

In Eq. (5), the external force term can be 

assumed to be a viscous drag force due to shear 

stress inside the pipe wall. It can be replaced 

with 

y
AFviscous






  (6) 

, where A is surface area, ∆ʋ is the average fluid 

velocity, and ∆y is separation distance between 

the wall and the center of the pipe. In Eq. (6), η 

represents the ratio shown in Eq. (7). 
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, where F is a force required to maintain the 

motion.  

Eq. (5) can be reduced to a typical 

eigenvalue/eigenvector problem which enables 

us to calculate the analytical values of natural 

frequencies of the system. 

3. Use of COMSOL Multiphysics®

Software

The vibrational behavior of a 3D pipe 

conveying fluid flow is investigated using the 

commercial finite element software COMSOL 

Multiphysics®. The 3D model is used based on 

the Aeroacoustics Module interface with the 

Structural Mechanics Module. Figure 1 shows a 

three dimensional finite element (FE) model of a 

pipe conveying fluid flow. 

Figure 1. (a) Geometric pipe model, and (b) meshed 

pipe model without crack where blue colored section 

represents PML. 

Table 1: Structure and material properties of the fluid 

flow conveying pipe.  

Pipe 

Material Copper 

Outer Diameter d 6e-2m 

Thickness t 5e-3m 

Modulus of 

Elasticity E 
110GPa 

Density ρ 8700 kg/m
3
 

Poisson ratio ν 0.35 

Pipe length L 0.5m 

Beam width w 1.2mm 

In order to simulate the flowing fluid inside a 

pipe, the Linearized Navier-Stokes, Frequency 

Domain interface is chosen for the study, which 

solves for the acoustic variations in the pressure, 

velocity field, and temperature. Coupling the 

fluid 

PML 

Fixed 

(a) 

(b) 
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interfaces to structures enables vibration analysis 

of the pipe in the presence of flow, such as fluid 

structure interaction (FSI) in the frequency 

domain. 

The pipe conveying fluid flow is made of 

copper that is most common type of material due 

to its quality, safety, and endurance. The fluid 

type is chosen as water. The material properties 

of the system are provided in Table 1. 

3.1 Governing Equations 

The governing equations used to solve for 

the frequency analysis are the continuity, 

momentum, and energy equations as follows: 

  Muui  00 

     Fuuuuui   000

       00000 TuCTuTuTiC pp  

       0000000 puTpupupiT  

  QTk       (8) 

, where p, u, and T are the acoustic perturbations 

to the pressure, velocity and temperature, 

respectively [9]. The time derivative of the 

dependent variables are replaced by iω where ω 

= 2πf which is angular frequency. The stress 

tensor is σ and Φ is the viscous dissipation 

function which is set to zero. The right-hand side 

source term M, F, and Q are mass source, 

volume force source, and heat source. The 

default values are all zero for those sources. The 

variables with a zero subscripts are the 

background mean flow values. Cp and k denote 

heat capacity at constant pressure and thermal 

conductivity, respectively and they are both zero 

by default.  is the gradient or del operator. The 

constitutive equations are the stress tensor and 

the linearized equation of state, while the Fourier 

heat conduction law is included in the energy 

equation [9]. 
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, where μ is dynamic viscosity, μB is bulk 

viscosity, I is the identity tensor, and βT is the 

isothermal compressibility [9]. 

Consider a pipe system, with n degrees of 

freedom, described by an equation of the form 

     FKuuDuM 


                  (10) 

, where u is the displacement vector, K is the 

stiffness matrix, D is the damping matrix, and M 

is the mass matrix. In the frequency domain, Eq. 

(10) takes the form

FKuDuiMu  000
2   (11) 

, where 
tieuu 

0 . The undamped system has n 

eigenvalues ωi, which satisfy the equation 

iii uMuK ˆˆ 2  (12) 

These eigenvectors are orthogonal with respect 

to M and K. This is shown in Eqs. (13) and (14). 

   0ˆˆ i
T
j uMu      i ≠ j, ωi ≠ ωj (13) 

   0ˆˆ i
T
j uKu      i ≠ j, ωi ≠ ωj (14) 

3.2 Geometry of the crack 

As shown in Eq. (3), a crack can be 

represented mathematically as elastic energy. 

Therefore, the local flexibility in the presence of 

the crack can be defined as a function of the 

geometry of a crack. Figure 2 shows the crack 

dimensions such as depth, width, and angle. 

Figure 2. Cross section of the cutaway cracked pipe 

and the side view. 

The effect of the crack geometry and location 

can be easily investigated by parameterizing the 

modeling process using COMSOL. In Fig. 2, a = 

0.0025 m, b = 0.012 m, and the angle of the 

crack is 5˚ to the both angles, hence the total 

cracked angle is 10˚. The location of the crack is 

placed at the middle of the pipe length. 

3.3 Boundary conditions 

The Aeroacoustic-Structure Boundary 

coupling is used to couple an Aeroacoustic 

model, which only applies to the Linearized 

Navier-Stokes in Frequency Domain, to the 

Structural Solid Mechanics component. This 

5˚ 

Ri 

Ro 

b a 
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coupling can be used to model fluid structure 

interaction (FSI) in the frequency domain. The 

coupling prescribes continuity in the 

displacement field between two different 

domains as in Eq. (15).  

    solidfluid uiu        (15) 

, where ufluid is the fluid velocity and usolid is the 

solid displacement. This results in the stress 

being continuous across the boundary between 

two different domains. This boundary condition 

will play an important role investigating the 

effects of the fluid to the vibration mode of the 

pipe system. 

Figure 3. The development of the velocity boundary 

layer in a pipe [10].  

In this paper, we consider the steady, laminar, 

incompressible flow of fluid with constant 

properties in the fully developed region of a 

straight circular pipe. The gravitational effect is 

negligible. The velocity profile is to be the same 

at any cross section of the pipe by assuming that 

flow in pipes is laminar for Re ≤ 2300 and that 

the flow is fully developed if the pipe is 

sufficiently long (relative to the entry length). In 

order to have the entrance effect negligible, each 

end of the pipe and the fluid sections are chosen 

as perfectly matched layers (PMLs) as shown in 

Fig. 1(b). PMLs provide accurate simulations of 

open pipes and other models with unbounded 

domains [9]. Figure 3 show the developed 

average velocity profile which is parabolic in 

laminar flow. The flow velocity profile is chosen 

as 
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, where Vmax is maximum velocity, Ro is the inner 

pipe radius, y and z are radial distance from the 

center to each axis (see Fig. 1 for the coordinate 

system used for the system). Two other 

assumptions are used for Eq. (16); fluid flow is 

Newtonian fluid for laminar case, and the no slip 

condition for the flow on a hard wall inside the 

pipe. The No slip condition is given in Eq. (17). 

 0u                               (17) 

3.4 Mesh and solver 

All domains are meshed by sweeping and 

boundary layers based on Free Triangle 

elements. They are chosen based on the patch 

analysis which was performed for both triangle 

and quadrilateral elements. The analyses show 

that the result is not sensitive to the type of 

elements.  

Figure 4. Meshed cracked pipe. 

The most vital section to be meshed for this 

model is the crack itself since it is modeled as 

relatively small size as shown in Fig. 4. The 

maximum size is set to 0.2744. This is because it 

is important to make meshes sufficiently 

resolved in the acoustic domain. The rule of 

thumb is that the minimum of ten to twelve 

degrees of freedom per wavelength are needed 

for the solution to be reliable with the (default) 

second-order elements. In the case of acoustic 

domain, at least five mesh elements per 

wavelength must be used. Thus, the mesh size 

depends on the frequencies involved. The 

numerical value of 0.2744 is used as maximum 

element size hmax which corresponds to 0.2λ, 

where λ is the wavelength of the sound waves in 

the acoustic domain. This is because the 

solutions to acoustics problems are wave like 
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and the waves are characterized by a wavelength 

λ which is defined as λ = c/f where c is the speed 

of sound in water and f is frequency. Hence, the 

wavelength λ has to be resolved by the mesh 

[11]. Figure 4 show that the zoomed in view of 

meshed crack. 

The model is solved in frequency domain 

and the solver is chosen for MUMPS. 

4. Simulation Results

Numerical simulation yields ideal responses 

with respect to the fluid loading effect and 

followed by the influence due to crack to the 

structure. Varying the speed of the fluid flow 

inside a pipe, observation is made on its effect to 

the eigenfrequency.  

4.1 Fluid loading and Crack effects 

Due to the added mass effect induced by the 

fluid inside the pipe, a significant reduction in 

natural frequencies is observed. In Table 2, the 

comparison of the simulation is made in vacuo 

and with water inside the pipe for only the first 

natural frequency. 

Table 2: Comparison for in vacuo and the pipe filled 

with water for its eigenfrequency 

eigen- 

frequency 

eigenfrequency 

w/ crack 

In vacuo ① 843.56 Hz ② 836.96 Hz

Filled with 

water 
③ 749.63 Hz ④ 747.58 Hz

Percentage 

decrease 
11 % 10 % 

The fluid added mass effect is estimated by 

calculating the frequency reduction ratio δ of 

each natural frequency defined as 

 

v

wv

f

ff 
 (18) 

where vf and wf are the natural frequencies in 

vacuo and with fluid inside the pipe. It can be 

observed that the eigenfrequency is considerably 

reduced by the presence of fluid inside the pipe. 

It also shows that the frequency reduction ratio 

remains rather similar to each other, which 

indicates that crack does not influence the 

frequency reduction ratio.  

Figure 5. Eigenmodes for the cases in Table 2. 

(a) 

(b) 

(c) 

(d) 
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It is important to note that their eigenmodes 

remain unchanged. This is shown in Fig. 5 where 

①, ②, ③, and ④ from Table 2 denote (a), (b),

(c), and (d) in Fig. 5, respectively.

4.2 Fluid flow effect 

In order to investigate the effect of the 

velocity of the fluid flow within a pipe with and 

without crack, frequency analysis has been 

performed to calculate its eigenfrequency by 

varying the maximum velocity of the fluid flow. 

The results have been tabulated in Table 3.  

The velocity of the fluid inside the pipe 

seems to affect the natural frequency of the pipe 

system such that as the velocity increases, its 

eigenfrequency decreases. However, there has 

not been found any specific correlation between 

them in this work. 

Table 3: Comparison for different velocities of the 

fluid flow inside the pipe for its eigenfrequency 

Max. 

velocity 

eigen- 

frequency 

eigenfrequency 

w/ crack 

1 m/s 749.11 Hz 747.58 Hz 

10 m/s 702.14 Hz 742.44 Hz 

5. Conclusion

In this paper, a pipe conveying fluid flow 

with crack has been investigated through 

numerical simulation using COMSOL 

Multiphysics software. Vibrational behavior of 

the pipe system has been studied to show the 

effect of fluid within a pipe as well as that of 

crack. The obtained results correspond well as 

expected. 

The work to be done in the future would be 

as follows; (1) investigation of further study of 

the velocity of the fluid flow in greater detail, (2) 

investigation of the crack location, (3) study of 

dual crack effect rather than single crack, and (4) 

derivation of mathematical model that 

corresponds with the simulation study. 
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