COMSOL CONFERENCE 2016 MUNICH

INVESTIGATION OF REVERSE ELECTRODIALYSIS UNITS BY MULTIPHYSICAL MODELLING

G. Battaglia, L. Gurreri, F. Santoro, A. Cipollina, A. Tamburini,

G. Micale, M. Ciofalo

giuseppe.battaglia91@gmail.com

Scuola Politecnica Dipartimento dell'innovazione Industriale e digitale (DIID) Ingegneria Chimica, Gestionale, Informatica e Meccanica, viale delle Scienze (Ed.6), 90128 Palermo, Italy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 640667.

RED HEAT TO POWER

CONTENTS

- **1. INTRODUCTION**
 - REVERSE ELECTRODIALYSIS
 - RED STACK

- 2. MODELLING
 - COMPUTATIONAL DOMAIN
 - MODEL EQUATIONS
 - BOUNDARY CONDITIONS
 - GEOMETRIES

- 3. RESULTS
 - FLUID DYNAMICS
 - ELECTROCHEMICAL TRASPORT PHENOMENA
 - SENSITIVITY ANALYSIS

REVERSE ELECTRODIALYSIS

 Reverse electrodialysis (RED) is a technology to produce electrical energy from the salinity difference between two salt solutions.

 Reverse electrodialysis uses ionexchange membranes. These present fixed charges in their polymeric structure that allows selectivity transport of ions with opposite charge through the membranes.

|--|

- Concentrate flow compartment
- Dilute flow compartment
- Redox solutions compartment
- Anionic exchange membrane
- Cationic exchange membrane

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS
		3. KESOEIS

- Concentrate flow compartment
- Dilute flow compartment
- Redox solutions compartment
- Anionic exchange membrane
- Cationic exchange membrane

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS

Consists of:

Concentrate flow compartment •

Dilute flow compartment

- Redox solutions compartment •
- Anionic exchange membrane ٠
- Cationic exchange membrane •

1. INTRODUCTION	2. NUMERICAL MODELLING
-----------------	------------------------

- Concentrate flow compartment
- Dilute flow compartment
- Redox solutions compartment
- Anionic exchange membrane
- Cationic exchange membrane

1. INTRODUCTION	2. NUMERICAL
-----------------	--------------

- Concentrate flow compartment
- Dilute flow compartment
- Redox solutions compartment
- Anionic exchange membrane
- Cationic exchange membrane

1. INTRODUCTION	2
	-

- Concentrate flow compartment
- Dilute flow compartment
- Redox solutions compartment
- Anionic exchange membrane
- Cationic exchange membrane

1. INTRODUCTION 2. NUMERICAL MODELLING 3. RESULTS 4. CONCLUSION

RED STACK MODELLING

3. RESULTS

2. NUMERICAL MODELLING

4. CONCLUSIONS

COMPUTATIONAL DOMAIN

CELL PAIR

- o 2-D simulations
- Consists of:
 - o Half anionic membrane
 - Concentrate flow compartment
 - o Cationic membrane
 - o Dilute flow compartment
 - o Half anionic membrane
- Cell pair of 1.2 mm instead of 10 cm
- Pure NaCl solutions

MODEL EQUATIONS

• Continuum equation:

$$\rho \nabla(\boldsymbol{u}) = 0$$

• Current density:

 \circ Navier-Stokes:

$$\rho \frac{\delta \boldsymbol{u}}{\delta t} + \rho(\boldsymbol{u} \nabla) \boldsymbol{u} = \nabla [-pI + \mu (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T] + \mathbf{F}$$

○ Nernst-Plank :

Ļ

$$\mathbf{V}_i = (-D_i \nabla c_i - z_i u_{mi} F c_i \nabla \Phi_i) + \mathbf{u} c_i$$

• Electro-neutrality:

$$\sum z_i c_i = 0$$

• Donnan Potential:

$$\Phi_{Donnan} = \Phi_{Membrane} - \Phi_{Solution} = \frac{RT}{ZF} ln \left(\frac{a_{solution}}{a_{membrane}}\right)$$

 $\mathbf{i} = F \sum z_i (-D_i \nabla c_i - z_i u_{mi} F c_i \nabla \Phi_i)$

 $\circ \text{ Absorption equilibrium at solution-membrane interface:} \\ \mathcal{C}_{Co-ion,mem} = \frac{1}{2} \left(\sqrt{C_{fix,mem}^2 + 4C_{counter-ion,solu}C_{Co-ion,solu}} - C_{fix,mem} \right) + \alpha C_{fix,mem}$

EQUIVALENT ELECTRICAL CIRCUIT

• Cell pair electric potential:

$$E_{cp} = \Phi_{AEM_right} - \Phi_{AEM_left}$$

• External current:

$$I = \frac{N E_{cp}}{(R_{blanck} + R_{ext})}$$

• Stack electric potential:

$$E_{stack} = IR_{ext}$$

• Total cell pair resistance:

$$R_{cp} = \frac{(E_{OCV,cp} - E_{cp})}{I}$$

• Gross power density:

• Pumping power density:

$$P_{\text{pump}} = \frac{(\Delta P_{\text{dil}} * Q_{\text{dil}} + \Delta P_{\text{conc}} * Q_{\text{conc}})}{A_{\text{membrane}}}$$

• Net power density:

$$P_{Net} = P_{Gross} - P_{Pump}$$

A=9.6*9.6 cm² and N=10

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS	4. CONCLUSIONS
	Geome	ETRIES	
The second state of the se	onductive square spacers		ters

www.red-heat-to-power.eu

TO POWER

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS	4. CONCLUSIONS
	Geometr	RIES	
Enpty channel	Non a	<figure></figure>	

UNIVERSITÀ DEGLI STUDI DI PALERMO

www.red-heat-to-power.eu

HEAT TO POWER

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS	4. CONCLUSIONS

RESULTS

1. INTRODUCTION	2. NUMERICAL MODELLING	3. RESULTS	4. CONCLUSIONS
		Ληδος	

ELECTRIC POTENTIAL

www.red-heat-to-power.eu

3. RESULTS

CONCENTRATION PROFILES

3. RESULTS

4. CONCLUSIONS

CONCENTRATION PROFILES

Concentration profiles in membranes Concentration (mol/m³)

SENSITIVITY ANALYSIS $C_{CON=4M}$

SENSITIVITY ANALYSIS C_CON=4M

SENSITIVITY ANALYSIS C_CON=4M

www.red-heat-to-power.eu

Resistance

SENSITIVITY ANALYSIS C_CON=4M

- At C_dil_0.01M and C_dil_0.005M profiled membranes give the lowest resistance
- At higher concentrations the empty channel gives the lowest resistance
- Non conductive spacers give always the highest resistance

SENSITIVITY ANALYSIS C_CON=4M

Conclusions

- The model allows:
 - to analyze stacks with different configurations;
 - to study different electric current conditions;
 - to describe the concentration profiles in the membranes.
- The model has shown that profiled membranes less resistive than diluite solution are able to increase Net power density of RED Units.
- 4M-0.01M solutions, with profiled membranes, give the highest net power density with a value of 4.38W/m².
- Even if C_dil_0.005M gives the highest driving force to the process, its high dilute solution resistance gives rise to high ohmic losses with less Net power Density production.

THANK YOU FOR YOUR ATTENTION

Giuseppe Battaglia PhD Student

giuseppe.battaglia91@gmail.com

UNIVERSITÀ DEGLI STUDI DI PALERMO

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 640667.

www.red-heat-to-power.eu