Acoustic Fluid-Structure Interaction Modelling of Gravity Dams in the Frequency Domain

Anna De Falco1, Matteo Mori2 and Giacomo Sevieri3

1Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy),
2Dept. of Civil and Industrial Engineering, Pisa Univ. (Italy),
3Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).
Adoption of the acoustic formulation:

Previous works:

«... Since the involved motions are small, the relatively simple equations may be used, that apply to sound in liquids. ... »

Author’s assumptions:
• Null global flow
• Rigid dam
• Infinite-length reservoir
• Small displacements of the fluid particles
• Bidimensional problem (2D)
Westergaard added mass method:

Fourier series solution for particle displacement:

\[\xi = -\frac{agT^2}{\pi^2} \cos\left(\frac{2\pi t}{T}\right) \sum_{n=1,3,5 \ldots}^{n} \frac{1}{n} e^{-qn} \sin\left(\frac{n\pi y}{2h}\right) \]

\[\eta = \frac{agT^2}{\pi^2} \cos\left(\frac{2\pi t}{T}\right) \sum_{n=1,3,5 \ldots}^{n} \frac{1}{nc_n} e^{-qn} \cos\left(\frac{n\pi y}{2h}\right) \]

\[c_n = \sqrt{1 - \frac{16wh^2}{n^2 gkT^2}} \]

Reservoir period(s):

\[T_n = \frac{4h}{c \cdot n} \]

Added Water Mass:

\[b(y) = \frac{7}{8} \sqrt{hy} \]
The COMSOL® model:

- Pressure acoustics interface – frequency domain Structural mechanics

Boundary conditions:

\[
\lim_{r \to \infty} \sqrt{x} \left(\frac{\partial}{\partial r} + ik \right) \rho = 0,
\]

- Infinite reservoir modeling: (Sommerfeld condition)
 - Plane Wave Radiation
 - Perfectly Matched Layer

- Multiphysics coupling: Acoustics-Structure boundary

- Rigid or deformable dam

- Base excitation

\[
\frac{dp}{dy} = 0,
\]

\[
\ddot{u}(t) = a_0 e^{i\omega t}
\]
Modeling the Infinite

Two approaches:

• **Plane wave radiation (PWR):** Robin boundary condition, second order
 \[
 -n \cdot \left(-\frac{1}{\rho_c} (\nabla p_t - q_d) \right) + i \frac{k}{\rho_c} p + \frac{i}{2k\rho_c} \Delta T p = Q_i^0
 \]
 No monopole or dipole sources

• **Perfectly matched layer (PML):** Complex coordinate transformation
 – Rational scaling:
 \[
 f_r(\xi) = s\Lambda \xi \left(\frac{1}{3p(1-\xi)} + 4 - \frac{i}{3p(1-\xi)} \right)
 \]
 \(\xi =\) Dimensionless coordinate, \([0,1]\)
 \(s =\) Scaling parameter, \(p =\) curvature parameter
 \(\Lambda =\) Typical wavelength parameter
Results: PML vs. PWR - Modal analysis

- Case (a): Rigid dam with perfect bottom reflection ($\alpha=1$)

<table>
<thead>
<tr>
<th>Eigen mode</th>
<th>Analytic ($\frac{nc}{4h}$) [Hz]</th>
<th>PWR [Hz]</th>
<th>PML [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.407</td>
<td>7.817</td>
<td>7.407</td>
</tr>
<tr>
<td>2</td>
<td>22.221</td>
<td>22.386</td>
<td>22.222</td>
</tr>
<tr>
<td>3</td>
<td>37.035</td>
<td>37.164</td>
<td>37.036</td>
</tr>
<tr>
<td>4</td>
<td>51.849</td>
<td>51.976</td>
<td>51.851</td>
</tr>
<tr>
<td>5</td>
<td>66.663</td>
<td>66.720</td>
<td>66.667</td>
</tr>
</tbody>
</table>

Reservoir depth = 50 m

Plot: First two eigenmodes, height is proportional to water pressure
Results: PML vs. PWR — Frequency response

• Case (a): Rigid dam with perfect bottom reflection ($\alpha=1$)

Plot: Total hydrodynamic pressure at the base of the dam.
Results: Multphysics interaction

• Case (b): Deformable dam with perfect bottom reflection ($\alpha=1$)

Plot: Horizontal base reaction at the dam foundation.
Results: Multphysics interaction

• Case (b): Deformable dam with various reflection coefficients (α)

Plot: Horizontal base reaction at the dam foundation.
Results: Multphysics interaction

- Case (b): Deformable dam compared to the added mass method

Plot: Horizontal base reaction at the dam foundation.

Added mass:
- Inaccurate Identification of other peaks
- Approximate Identification of the first mode
- Accurate value of base shear For low frequencies
Results: Multphysics interaction

- Case (b): Variation of dam Young’s modulus

Plot: Horizontal base reaction at the dam foundation.
Thanks for your attention!