

A Simulation of Extraordinary Optical Transmission Devices at Terahertz Frequencies

Shaikhah Almousa and Jason A. Deibel

Department of Physics Wright State University Dayton OH, USA

Optics, Photonics, and Semiconductors 1

October 6th, 2016

COMSOL

2016 BOSTON

CONFERENCE

Experimental (literature)

- ✓ **Carbon nanotube (CNT) EOT on silicon substrate** with *asymmetric* aperture shape was studied.
- ✓ **Free standing CNT-based EOT** had higher enhanced transmission through <u>symmetric</u> apertures.
- ✓ **CNT-based EOT on silicon** substrate exhibited broadband transmission with <u>symmetric</u> apertures

Computational (our work)

COMSOL Modeling

- ✓ Material properties for copper are assigned using COMSOL's library.
- \checkmark Material properties of the CNT thin film are extracted from the experimental data.

CNT-based EOT

 ✓ The dielectric constant is a function of the frequency dependent refractive index results...

$$\epsilon = (n^2 - k^2) + i(2nk)$$

✓ For simplicity, the conductivity of CNT is defined with a Drude conductivity model...

$$\sigma = \frac{\omega}{4\pi i} (\epsilon - 1)$$

COMSOL

2016 BOSTON

CONFERENCE

T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny, Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets, *Optical Materials Express*, **2**, 782-788 (2012).

COMSOL Modeling

COMSOL CONFERENCE 2016 BOSTON

Boundary Conditions

WRIGHT STATE

IVERSITY

This configuration simulates an infinite xy plane wave and xy aperture device.

Physics controlled mesh of

maximum element size = $\frac{\lambda}{c}$

✓ Skin depth δ is much smaller than the thickness of the thin film *d*.

$$\delta = \frac{2}{\omega\mu_0\mu_r\sigma}$$

 The boundaries of the EOT device are assigned with the Impedance Boundary Condition.

The z-component of the electric field on the surface

0.6 THz

0.86 THz (resonance)

The propagating wave at 0.235

THz (resonance)

0.235 THz (resonance)

0.1 THz

- COMSOL CONFERENCE 2016 BOSTON
- ✓ The simulation of the copper-based EOT device exhibits a red-shifted resonant transmission frequency that is red-shifted experimentally as well for a copper-based EOT device which has similar dimensions of its apertures.
- ✓ The simulated resonant frequency of the CNT-based EOT device shows good agreement with the experimental device results.
- Woods anomalies have been seen in simulations of both the copper and CNT EOT devices.
- ✓ The Drude-Lorentz could be used for CNT conductivity for more validation.
- More EOT-devices can be studied as a function of the materials' properties, aperture geometry, and polarization direction.

- My advisor, Dr. Jason Deibel
- King Saud University scholarships program.
- Wright State University Office of Research and Sponsored Programs.
- The Ohio Third Frontier Program.

- 1. D. Graham-Rowe, Terahertz takes to the stage, *Nature Photonics*, **1**, 75-77 (2007).
- 2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio & P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, *Nature*, **391**, 667-669 (1998).
- 3. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Surface plasmons enhance optical transmission through subwavelength holes, *Phys. Rev. B*, **58**, 6779-6782 (1998).
- 4. A. Baragwanath, M.C. Rosamond, A.J. Gallant, J. M. Chamberlain, Time-of-Flight Model for the Extraordinary Transmission Through Periodic Arrays of Subwavelength Apertures at THz Frequencies, *Plasmonics*, **6**, 625-636 (2011).
- 5. Y. Wang, Y. Tong and X. Zhang, Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films, *AIP Advances*, **6**, 045304 (2016).
- 6. T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny, Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets, *Optical Materials Express*, **2**, 782-788 (2012).
- 7. Y. Wang, X. Zhao, G. Duan, and X. Zhang, Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film, *Optics Express*, **24**, 15730-15741 (2016).
- 8. N. Ashcroft, N. Mermin, Solid State Physics, 17, Thomson Learning, United States (1976).

COMSOL CONFERENCE 2016 BOSTON

Thank you for your attention

Questions

