Thermal Corrective Devices for Advanced Gravitational Wave Interferometers

Marie Kasprzack,
Louisiana State University

6th October 2016

COMSOL Conference 2016 Boston
1. Advanced Gravitational Wave Detectors

- Based on resonant optical cavities with suspended optics under vacuum: **dual recycling Michelson interferometer**

- On the way to the 2nd Observing run:
 - 2 \textbf{LIGO} detectors in operation, \textbf{Virgo} detector will join in 2017

- First observations started recently at LIGO: \textbf{GW150914, GW151226}

- Facilities use \textbf{high power laser} (\text{CW 1064 nm})
1. Advanced Gravitational Wave Detectors

High laser power brings thermal effects:

• Thermal load on a Test Mass: **Heating of the substrate**
 - Coating and substrate absorb the beam power
 - Index of refraction of the mirror changes
 - produces a **thermal lens**
 - and potentially **high order modes**
 - Thermal expansion
 - changes the **curvature** of the mirror

• In the main cavities, thermal lensing ~ 0.8 μm (focal length 5 km)

• Thermal load changes over time

→ We need adaptive optics devices to correct for in-situ aberrations and input mode matching
2. Thermal devices for aberration mitigation

- **Ring heater**: *installed*
 - Around the main mirrors of the cavities
 - Target: correction of the Radius of Curvature
 - Two semispherical heating segments

- **Thermally deformable mirror**: *prototype*
 - Outside the cavity
 - Target: correction of higher mode aberrations for mode matching
 - Set of 61 resistors in the back of a 2” Ø mirror
3. Ring Heater

- **Simple analytical model:**
 - From the heat equation
 - Both in steady state and time dependent model
 - One circular segment
 - Useful to predict the general behavior of the system

- **Limitations:**
 - Design very limited
 - Axis-symmetry

- **COMSOL® Model**
 Double purpose of validate our analytical model and lay the foundations for a more complex model
3. Ring Heater

- **Main time constant:**
 - 27 hours to reach steady state

- **Very good agreement between our analytical model and COMSOL**
 - at $t = 1000 \text{ s}$, relative difference below 5%
 - At $t = 100000 \text{ s}$, relative difference below 1%
4. Thermally Deformable Mirror

- Actuation:
 Control of the **optical path length** via the **substrate temperature**

\[\text{OPD} = \left(\frac{\partial n}{\partial T} + (1+u)(n-1) \right) \cdot \int_{z=0}^{d} T(x,y,z) \, dz \]

Opto-mechanical parameters

Temperature field

Incident aberrated wavefront
Reflected corrected wavefront

[Diagram of a thermally deformable mirror with AR and HR coatings, resistor array, and substrate with non-homogeneous temperature distribution]
4. Thermally Deformable Mirror

- COMSOL® Model
 - Finite dimensions
 - 24.5 mm radius
 - 10 mm thick
 - No axis-symmetric assumption
 - Square actuator
 - 100 mW coupled

- Effect of the actuator size?

- What is the best substrate for our application?
 - Moderate temperature increase
 - Large amplitude of the optical response
4. Thermally Deformable Mirror

- Global shape of temperature integral dominated by the heat radiation

![Response of the FS](image)

- Shape characterized by:
 - The width at half maximum (HWHM)
 - depends on actuator size
 - mostly independent from the thermal properties of the substrate
 - independent from the thickness
 - the amplitude
4. Thermally Deformable Mirror

- Amplitude of actuation:
 - Thermal conductivity K is the most important parameter
 - Material study:
 - Choice of the substrate with the lowest thermal conductivity

<table>
<thead>
<tr>
<th>Substrate</th>
<th>K [W.m$^{-1}$.K$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK7</td>
<td>1.11</td>
</tr>
<tr>
<td>FS</td>
<td>1.38</td>
</tr>
<tr>
<td>SF57</td>
<td>0.62</td>
</tr>
<tr>
<td>Zerodur</td>
<td>1.46</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>9.71</td>
</tr>
<tr>
<td>Sapphire</td>
<td>40</td>
</tr>
</tbody>
</table>
4. Thermally Deformable Mirror

- Figure of merit: trade-off between the amplitude response and the temperature of the substrate

<table>
<thead>
<tr>
<th>Material</th>
<th>ΔT (K)</th>
<th>OPD Amplitude (nm)</th>
<th>OPD HWHM (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK7</td>
<td>52.5</td>
<td>368</td>
<td>2.39</td>
</tr>
<tr>
<td>FS</td>
<td>43.1</td>
<td>400</td>
<td>2.41</td>
</tr>
<tr>
<td>SF57</td>
<td>91.2</td>
<td>1543</td>
<td>2.32</td>
</tr>
<tr>
<td>Zerodur</td>
<td>40.9</td>
<td>603</td>
<td>2.41</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>9.0</td>
<td>130</td>
<td>2.48</td>
</tr>
<tr>
<td>Sapphire</td>
<td>4.6</td>
<td>31</td>
<td>2.49</td>
</tr>
</tbody>
</table>

- Best solutions: Zerodur, Fused Silica, BK7

→ Current prototype: **Fused silica with 61 actuators of 1 mm2**
5. Conclusion

Ring heater
• Geometric improvement of the model (shape, fibers, …)
• High order mode estimation
• Kalman filter implementation for the live prediction of aberrations

Thermally Deformable Mirror:
• Choice of material
• Design study from influence functions
• Tests and validations of proof of principle
• Still under development
6. References

• Overview of Advanced LIGO Adaptive Optics
 A.F. Brooks et al.

• Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory,
 J. Ramette, M. Kasprzack, et al.

• Thermal Live Estimator for Advanced LIGO,
 J. Ramette, LIGO Document T1500390

• Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,
 M. Kasprzack et al.

• Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers
 M Kasprzack