Calculation of Inductance of Sparsely Wound Toroidal Coils A. Pokryvailo Spellman High Voltage Electronics Corp., Hauppauge, NY, USA

Introduction: Analytical methods used for inductance calculation of toroidal coils yield large errors in the case of sparsely wound coils, especially when using low permeability cores.

W(1)=2 freq(1)=50000 Surface: Magnetic flux density norm (T) req(1)=50000 Surface: Magnetic flux density norm (T)

Results:

W(1)=4 freq(1)=50000 Surface: Magnetic flux density norm W(3)=6 freq(1)=50000 Surface: Magnetic flux density norm (T)

Figure 1. Flux density for two and eight turns. Winding current is 150 Arms for both cases.

Computational Methods: The problem was solved using the Magnetic Field Interface. The governing equations for the frequency domain are shown below:

Figure 3. Flux density for W=4, 8, 12, 16. Winding current is 150 Arms for all cases. murel=10.

Table 1. Inductance, in H, full volume model, for different W and permeability, murel. Wire radius rwire=2 mm.

W	<i>murel</i> =1	<i>murel</i> =10	<i>murel</i> =100
2	1.94E-07	2.97E-07	9.89E-07
4	2.42E-07	5.46E-07	3.17E-06
6	3.22E-07	9.31E-07	6.99E-06
8	3.94E-07	1.50E-06	1.16E-05
12	6.38E-07	3.01E-06	2.64E-05
16	9.51E-07	5.14E-06	4.67E-05

$$(j\omega\sigma - \omega^{2}\varepsilon_{0}\varepsilon_{r})A + curlH = J_{e}$$
$$B = curlA$$

Conclusions: For sparsely wound coils, dependence of inductance on number of turns is far from quadratic; wire inductance is a considerable factor, especially for low number of turns and slim cores; fringe field of a coil sparsely wound on a lowpermeability core is low but not negligible.

Figure 2. Different modeling approaches: a-discrete turns, bfilament (edge) current - taking advantage of symmetry; cfilament current, d-full-bodied winding – full space model.

References:

- 1. F.W. Grover, "Inductance Calculations", Van Nostrand, 1946; Reprint: Dover, 2004.
- 2. "Micrometals Iron Powder Cores", Catalog, Issue L, February 2007.
- 3. W. Frei, "Exploiting Symmetry to Simplify Magnetic Field Modeling", Comsol blog, 2014.

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston