Introduction: Grating couplers are a common optical component for introducing light into chip-based photonic structures. They are used extensively for optical interconnects and optical device integration. A microfluidic diffraction grating coupled waveguide (MDGCW) biosensor applies a grating coupler for label-free detection of a biological analyte. A novel MDGCW is modeled and the results presented. The results illustrate the high sensitivity of the biosensor for measuring the refractive index of the binding layer.

Computational Methods:

The boundary mode analysis is used to run the simulation and is solved for the propagation constant.

\[\nabla \times \mu_{r}^{-1} (\nabla \times E) - k_{0}^{2} \left(\varepsilon_{r} - j \frac{\sigma}{\omega \varepsilon_{0}} \right) E = 0 \]

\[\lambda = -j \beta - \delta_{z} \]

\[E(x, y, z) = E(x, y) e^{-j k_{x} z} \]

The sensor is composed of the optical elements, a flow cell with medium, and a binding layer that is formed on the dielectric slab of optical elements.

![Figure 1. The geometry of the sensor](image1)

Figure 1. The geometry of the sensor

Figure 2. The detail of the sensor and the binding layer

\[n_{e_{ff}} = n_{top} \sin \varphi_{i} + \frac{\lambda}{d} \]

\[\Delta n_{e_{ff}} = n_{top} \sin \varphi_{i} + \frac{\Delta \lambda}{d} , \quad S = \frac{\Delta \lambda}{\Delta n} \]

Factors that affect the \(n_{e_{ff}} \) : dimensions of the structure and the refractive index of the media.

Factors that affect the \(\Delta \lambda \): \(\Delta n_{e_{ff}} \), \(d \), \(n_{top} \), \(\sin \varphi_{i} \).

The binding layer is modeled to detect the refractive index. For different refractive indices or different coupling angles, the propagation mode of the light coupled in the grating waveguide will be changed, causing the shift of the peak in the spectrum.

When the refractive index of the binding layer is changed by the analyte of interest, the peak shift will be linearly proportional to the change of the refractive index.

Results:

![Figure 3. Electrical field distribution of the sensor](image2)

Figure 3. Electrical field distribution of the sensor

(1). Incidence angles of 5.7°, 7.9° and 10.1° are shown as Figures 4, 5 and 6, respectively.

(2). Binding layer thicknesses of 0.2μm, 0.15μm and 0.1μm are shown as Figures 4, 7, and 8, respectively.

(3). A comparison of the different incident angles for \(n_{top} = 1.7 \) is shown as Figure 9.

Conclusions: Good sensitivity of the biosensor is obtained by the simulation. From the results, the refractive index of the binding layer, the dimension of the binding layer, and the coupling angle will affect the sensitivity. Furthermore, since the effective mode index of the grating is related to the grating period, the thickness of the grating, and the etch depth of the grating, changes to any of these parameters allow further optimization of the MDGCW based biosensor.

Reference:

1. H. Mukunst et al., Waveguide-Based Biosensors for Pathogen Detection, Sensors, 9, 5783-5809 (2009)