Secondary Flow of Liquid-liquid Two-Phase Fluids in a Pipe Bend

M. Ayala¹, P. Santos², G. Hamester², O. Ayala*³

¹Mechanical Engineering Department, Universidad de Oriente, Puerto La Cruz, Venezuela
²Brazil Scientific Mobility Program, CAPES, Brasilia DF, Brazil
³Engineering Technology Department, Old Dominion University, Norfolk VA, USA
*oayala@odu.edu
Introduction

- The world is progressively requiring more energy, mainly from the oil company
- Erosion is a phenomena that costs millions of dollars to companies
- Highest erosion rate is most commonly found in bends
- Better understanding of flow behavior would help in the future to minimize erosion
Approach to a solution

- Physical Model

- Reynolds Number: 100,000 and 10,000

- Phases:
 - Continuous Phase
 - Dispersed Phase

- Fluids:
 - Water with 20% or 0% of NaCl
 - Oil

- Volume fraction:
 - 80% Oil – 20% Brine or Water
 - 20% Oil – 80% Brine or Water
Approach to a solution

• Numerical Model

\[\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + \nabla \cdot \left(\mu (\nabla u + (\nabla u)^T) - \frac{2}{3} \mu \nabla \cdot u I \right) + F\]

• 2 sets of Navier-Stokes equations

• Continuity Equation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0\]

• Transport Equation

\[\nabla \cdot (\phi_d u_d + \phi_c u_c) = 0\]

Normal mesh results had 7% difference when compared to finer

Wall lift-off values were lower than 20 (viscous units)
Results

Reynolds 100,000

- Vortical Structures follow same behavior as a one phase fluid
- 2 perfectly defined Dean vortices through the whole bend
Results

Reynolds 100,000

<table>
<thead>
<tr>
<th>Curvature Ratio</th>
<th>Volume Fraction</th>
<th>Vorticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45°</td>
<td>End</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha_c \alpha \frac{u^2}{r} \]
Results

Reynolds 10,000

- Slightly diagonal volume fraction stratification
- Strong gravity seems to diminish the vortical structures
Results

Reynolds 10,000

<table>
<thead>
<tr>
<th>Curvature Ratio</th>
<th>Volume Fraction</th>
<th>45° - Oil</th>
<th>45° - Water</th>
<th>End - Oil</th>
<th>End - Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Gravity does not affect strongly at the end of the bend
- Some vortical structures appear to be close to the center of pipe
Reynolds 10,000

- Gravity does not affect strongly at the end of the bend
Results

Reynolds 10,000
Conclusions

- The flow behavior is strongly related to gravitational and centrifugal force ratio
- Secondary flow appears, in the form of vortical structures
- Salt concentration plays little or no role on the fluid behavior
- Future work is planned to undergo a study of a gravitational-to-centrifugal ratio of 1 and behavior of two-phase Laminar flow in pipe bends
Thank You!