Study of the CO$_2$ Transfer Rate in a Reacting Flow for the Refined Sodium Bicarbonate Production Process

Christophe Wylock (F.R.S.-FNRS research fellow), Aurélie Larcy, Pierre Colinet, Thierry Cartage and Benoît Haut

Chemical Engineering Department
Applied Science Faculty, Free University of Brussels
Table of content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
Refined sodium bicarbonate (NaHCO$_3$) production (Solvay) process in bubble columns (BIR columns)

Limiting step: gas-liquid CO$_2$ absorption
Introduction

- Main resistance: in the liquid phase, where CO₂ takes part to chemical reactions
- This work: modelling of the CO₂ transfer rate from a bubble to the liquid phase

2 reversible chemical reactions:
- \(\text{CO}_2 + \text{NaOH} \rightleftharpoons \text{NaHCO}_3\)
- \(\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NaHCO}_3 + \text{NaOH}\)
Introduction

- Main resistance: in the liquid phase, where CO$_2$ takes part to chemical reactions
- This work: modelling of the CO$_2$ transfer rate from a bubble to the liquid phase
 - Coupling of
 - Convective transport
 - Diffusive transport
 - Chemical reactions
- Interfacial adsorbed surfactants: change the flow field around the bubble → 2 cases investigated:
 - fully contaminated bubble (no slip)
 - clean bubble (slip)
Table of content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
Modelling

- Incompressible Navier-Stokes mode and Convection and Diffusion mode from the C.E. module
- 2-D axisymmetric geometry
- Computational domain
 - Semi-bubble located at the center of a semi-circular domain
 - Inertial reference frame located at the mass center of the bubble

Dimensionless bubble diameter: \(d_b = 1 \)
Domain diameter: \(5 \, d_b \)
Modelling

- Governing equations (in vectorial dimensionless form)
 - Navier-Stokes and continuity
 \[
 \begin{aligned}
 (u \cdot \nabla) u &= \nabla \left[-p + \frac{1}{Re} \left(\nabla u + (\nabla u)^T \right) \right] \\
 \nabla \cdot u &= 0
 \end{aligned}
 \]
 - Mass transport coupled with chemical reactions

 \[\begin{aligned}
 \nabla \left(\frac{1}{Pe} \nabla a \right) &= -r_1 - (u \cdot \nabla) a \rightarrow \text{CO}_2 \text{ concentration} \\
 \nabla \left(\frac{1}{Pe} \nabla b \right) &= \nabla \left(-r_1 - r_2 - (u \cdot \nabla) b \right) \rightarrow \text{NaOH concentration} \\
 \nabla \left(\frac{1}{Pe} \nabla c \right) &= \nabla \left(r_1 - r_2 - (u \cdot \nabla) c \right) \rightarrow \text{NaHCO}_3 \text{ concentration} \\
 \nabla \left(\frac{1}{Pe} \nabla d \right) &= \nabla \left(r_2 - (u \cdot \nabla) d \right) \rightarrow \text{Na}_2\text{CO}_3 \text{ concentration}
 \end{aligned}\]

 - 1st reaction rate: \[r_1 = \frac{Ha_1}{ab - ca} \rightarrow \text{Hatta1 number} \]
 - 2nd reaction rate: \[r_2 = \frac{Ha_2}{bc - d} \rightarrow \text{Hatta2 number} \]
Modelling

- **Meshing**
 - Concentric circular mapped mesh
 - Finer in the vicinity of the interface

 ![Mesh Diagram]

 Thickness: $0.05 d_b$

 The diffusion boundary layer does not lie beyond this zone

- **Solver**: stationnary UMFPACK
Table of content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
1) Validation by comparison of the simulation results WITHOUT reactions with classical correlations from literature

Drag coefficient

- COMSOL fully contaminated
- Lapple et al. (eq. 24)
- Clift et al. (eq. 25)
- COMSOL clean
- Hamelie et al. (eq. 22)
- Haas et al. (eq. 23)

Sherwood number

- COMSOL clean
- Loeschl&Calderbank (eq. 27)
- Boussinesq (eq. 28)
- COMSOL fully contaminated
- Clift et al. (eq. 29)
- Clift et al. (eq. 30)

Separation angle

- COMSOL fully contaminated
- Clift et al. (eq. 26)

Excellent agreement → validated
Table of content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
1) Validation by comparison of the simulation results without reactions with classical correlations from literature: OK

2) For operating conditions of BIR columns
 - Bubble: 1 mm diameter and rising velocity of 0.2 m/s
 \[Re = 200 \text{ and } Pe = 100\,000 \]
 - Other parameter values:\(^1\):
 \[
 \begin{align*}
 \alpha &= 0.003 \\
 Ha_1 &= 0.19 \\
 Ha_2 &= 902 \\
 \beta_b &= 4.1 \\
 \beta_c &= 0.9 \\
 \beta_d &= 0.7 \\
 \chi_b &= 64 \\
 \chi_c &= 0.03 \\
 \chi_d &= 0.025
 \end{align*}
 \]
 Study of the CO\(_2\) transfer rate as a function of the Hatta1 number (dimensionless ratio of chemical reaction 1 rate on CO\(_2\) diffusion rate)

\(^1\) correlations from Vas Bhat et al. (2000)
Simulation results

- Simulations of the CO$_2$ concentration field
 - No reactions: $Ha_1=0$ (and $Ha_2=0$)

Fully contaminated bubble

Clean bubble

![Simulation images]
Simulation results

- Simulations of the CO$_2$ concentration field
 - Slow reaction 1: $H \sigma_1 = 0.1$

Fully contaminated bubble
Clean bubble
- **Simulations of the CO$_2$ concentration field**
 - Moderate reaction 1: $Ha_1 = 1$

 Fully contaminated bubble

 Clean bubble

Max: 0.9

Min: 0.1

Max: 0.9

Min: 0.1
Simulation results

- Simulations of the CO$_2$ concentration field
 - Fast reaction 1: $Ha_1=10$

Fully contaminated bubble

Clean bubble
Simulation results

- Simulations of the CO₂ concentration field
 → Increasing CO₂ depletion for increasing reaction 1 rate

- Calculation of the CO₂ transfer rate:

 → The CO₂ consumption enhances the CO₂ transfer rate
Table of content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
3) Comparison of the 2-D axysymmetric clean bubble case and a commonly-used 1D-approach of the chemical engineering

- Description of the Higbie approach
 - Liquid flow: mosaic of liquid elements slipping on the bubble
 - Each element stays in contact with the bubble the same time
 - No shear stress in the liquid
 - Diffusion is normal to the interface

\[
\begin{align*}
\frac{\partial a}{\partial t} &= \frac{1}{Pe} \frac{\partial^2 a}{\partial x^2} - r_1 \\
\frac{\partial b}{\partial t} &= \frac{\beta_b}{Pe} \frac{\partial^2 b}{\partial x^2} + \chi_b \left(-r_1 - r_2 \right) \\
\frac{\partial c}{\partial t} &= \frac{\beta_c}{Pe} \frac{\partial^2 c}{\partial x^2} + \chi_c \left(r_1 - r_2 \right) \\
\frac{\partial d}{\partial t} &= \frac{\beta_d}{Pe} \frac{\partial^2 d}{\partial x^2} + \chi_d r_2
\end{align*}
\]

Axis pointed toward the liquid phase in normal direction of the interface
Simulation results

- Comparison results

- The Higbie approach provides an excellent estimation when $Ha_1 > 1$.
Table of Content

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan
Conclusion and future plans

- Development of a model of bubble-liquid CO\(_2\) transfer coupled with chemical reactions (for 2 cases):
 - Validation without reaction: excellent agreement
 - Estimation of the chemical enhancement on the transfer rate
 - Excellent comparison for the transfer rate estimation between 2-D clean bubble case and 1-D Higbie approach

- Future plans
 - Extension to larger bubbles (2 - 6 mm)
 - \(400 \leq Re \leq 1200\)
 - Spherical bubble \(\rightarrow\) ellipsoidal-shape bubble
 - Shape coming from experimental observation
 - Comparison with spherical shape \(\rightarrow\) quantification of the shape effect
Thanks for your attention