

Identification of Noise Sources by Means of Inverse Finite Element Method

COMSOL Conference

Hannover, 05. November 2008

M. Weber*

T. Kletschkowski*

B. Samtleben**

* Helmut-Schmidt-University Hamburg

HECH -

**Airbus Germany

Identification of Acoustic Hot Spots in an Aircraft

Problem:

Standing waves and reflections

IFEM approach: Inverse Finite Element Method

Overview:

- 1. Motivation
- 2. Solution approach
- 3. 3D simulation
- 4. Experimental validation
- 5. Conclusion & outlook

Motivation

Governing Equations

Solution Approach

Inverse Finite Element Method (IFEM)

$$\mathbf{K}\mathbf{p} = \mathbf{v}$$

 $\begin{bmatrix} \mathbf{K}_8 & \mathbf{K}_9 & -\mathbf{E} \end{bmatrix}$

$$\begin{bmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \mathbf{K}_{3} \\ \mathbf{K}_{4} & \mathbf{K}_{5} & \mathbf{K}_{6} \\ \mathbf{K}_{7} & \mathbf{K}_{8} & \mathbf{K}_{9} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{MK} \\ \mathbf{p}_{TU} \\ \mathbf{p}_{BU} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{MK} \\ \mathbf{v}_{TK} \\ \mathbf{v}_{BU} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{K}_{2} & \mathbf{K}_{3} & \mathbf{0} \\ \mathbf{K}_{5} & \mathbf{K}_{6} & \mathbf{0} \\ \mathbf{K}_{8} & \mathbf{K}_{9} & -\mathbf{E} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{TU} \\ \mathbf{p}_{BU} \\ \mathbf{v}_{BU} \end{bmatrix} = \begin{bmatrix} -\mathbf{K}_{1} \mathbf{p}_{MK} \\ -\mathbf{K}_{4} \mathbf{p}_{MK} \\ -\mathbf{K}_{7} \mathbf{p}_{MK} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{K}_2 & \mathbf{K}_3 \\ \mathbf{K}_5 & \mathbf{K}_6 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{TU} \\ \mathbf{p}_{BU} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{MK} - \mathbf{K}_1 \, \mathbf{p}_{MK} \\ \mathbf{v}_{TK} - \mathbf{K}_4 \, \mathbf{p}_{MK} \end{bmatrix}$$

 \mathbf{p}_{TU}

 \mathbf{V}_{BU}

ill-conditioned

over-determined for $n_M > n_B$

- => Regularization:
 - Tikhonov
 - Conjugated Gradients (CG)
 - Truncated Singular Value Decompostion (TSVD)

Sachau, D.; Drenckhan, J.: Sound source localization in cabins by inverse finite element analysis, DAGA'06, Braunschweig

 $\mathbf{p}_{BU} = \left[-\mathbf{K}_7 \, \mathbf{p}_{MK} \right]$

COMSOL / MATLAB Interaction

A) Simulated Data:

COMSOL / MATLAB Interaction

B) Measured Data:

6

Solution Approach

3D Simulation with Artificial Measurement Noise

Mapping of a Long Range Airliner Cross Section

Wideband noise excitation

- inner loudspeaker
- outer loudspeakers

Microphone distance: 0.17m

► 7172 positions

FE Model of the Cavity

1. Coarse Mesh

Total nodes:	27,000
Inner sub-domain:	9,900
Boundary:	8,700

2. Fine Mesh

Total nodes:	68,000
Inner sub-domain:	31,000
Boundary:	12,500

Exemplary Comparison of Model and Mapping (f = 293Hz)

Simulated sound pressure from source with normal acceleration BC

Measured sound pressure from excitation with internal loudspeaker

Inverse Calculation: Sound Pressure (Magnitude) (Inner Loudspeaker, f = 90Hz)

Experimental Validation

f = 90Hz, coarse mesh

Experimental Validation

f = 90Hz, fine mesh

f = 200Hz, coarse mesh

f = 200Hz, fine mesh

Conclusion

- The primary source and possible other sources and sinks could be identified.
- The absorbing quality of the foam wedges was confirmed for high frequencies.
- Obviously there is an optimal mesh density dependent on the frequency.

Next Steps

- determine optimal mesh density
- thin out measurement grid / narrow inner sub-domain
 => change determinedness of the equation system
- enforce nodes at measurement positions to minimize interpolation error

Acknowledgement:

The authors gratefully acknowledge funding by the City of Hamburg in the framework of LuFoHH in cooperation with Airbus.

Validation of the FE Model

Model convergence: - calculate some eigenfrequencies around 200Hz

- increase number of DOF and re-calculate
- repeat until eigenfrequencies vary < 0.1% (identification via MAC)

~70 000 DOF equals $\lambda/9$ for f_{max} = 300Hz

18

Mapping: Slice Plots, Sound Pressure (Magnitude), f = 90Hz

Side view:

Top view:

Mapping: Slice Plots, Sound Pressure (Magnitude), f = 200Hz

Side view:

Front view:

Top view:

