Dynamic Study of Field and Current Distribution in Multifilamentary YBCO Thin Films

Francesco Grilli
Ecole Polytechnique Montreal

Andrea Lucarelli, Gunter Lüpke
College of William and Mary

Timothy Haugan, Paul Barnes
Air Force Research Laboratory
Motivation

- High-temperature superconductors (HTS) have many potential applications
 - Most promising ones: YBa$_2$Cu$_3$O$_7$
 - Thin films
 - Very high aspect ratio (width/thickness): 1,000 – 10,000
 - AC losses still too high
 - Filamentarization
 - What is the dynamic?
- How can we predict their behavior?
 - Analytical models are too simplified
 - FEM
 - Numerically challenging
 - HTS have highly non-linear current-voltage relation
 - High aspect ratio (high number of FEM nodes)
The model (2-D)

- Faraday’s law: \(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \)
- Non-linear resistivity for the superconductor:
 - \(\rho(J) = \frac{E_c}{J_c} |J/J_c|^{n-1} \)
 - \(n = 25-50 \)
- Magnetic field components as state variables:
 - \(J \) derived from \(H \) by differentiation
 - \(E = \rho J \)
- Transport current: integral constraint
- External field: boundary conditions
- Edge elements

\[E \sim J^n \]
Power losses in multifilamentary YBCO films

- **Hysteresis losses**

 \[Q_{hv}^{st} \approx I_c \cdot E_\perp = I_c w_n Bf \]

- **Coupling losses**

 \[Q_{vn}^{st} \propto \frac{|E_\perp|^2}{\rho} W d_n = 2 \frac{(BfL)}{\rho} d_n W \]

- **Total losses**

 \[Q = Q_{hv}^{st} + Q_{vn}^{st} \approx Iw_n Bf + 2 \frac{(BfL)}{\rho} d_n W \]

- **Loss reduction (high \(\rho \))**

 \[\frac{\langle Q_{st}^{st} \rangle_V}{\langle Q \rangle_V} \approx \frac{1}{N} \]

 \[w_n = \frac{W}{N} \]
Simulation of 6 rectangular filaments
- Dimensions: 120 µm x 300 nm
- 60,000 mesh nodes
- 90,000 degrees of freedom

Magnetic field evaluated 1 µm above sample
- As in experiments

Physical parameters
- $J_c = 3 \times 10^{11}$ A/m²
- AC current: 8 A @ 1000 Hz
- DC field 5 mT
Motivation for TRMOI

- TRMOI offers:
 - High spatial and temporal resolution (sub-µm, pico-second)
 - Dynamical study of the vortex movement
 - Qualitative and quantitative -> current density evolution
 - Manipulation of vortices

Leidere PRL 93, 2642 (1993)
Johansen PRB 54, 16264 (1996)
Experimental setup

- Superconductor
- Garnet indicator
- He lamp
- CCD camera
- Polarizer
- Cryostat
- Solenoid
- Analyzer
- Microscope
- Laser
- AC Power Source
- PC
- Probe
- Solenoid
- He
- Cryostat
- AC Power Source
- Pump
- T ± δT
- Θ_{F} = αB
- H_a ± δH_a
- Laser pulse phase
- AC time
- Time
Multifilamentary YBCO Samples

YBCO thin film 250-300nm thick. 6 filaments obtained using etching.

YBCO thin film 1-3 mm thick. 7 filaments obtained using laser processing.
Experimental observation
TRMOI field and current profiles

$T = 40 \text{K}$ $H_a = 5 \text{mT}$ $I = 8 \text{A}$ $f = 1000 \text{Hz}$
Transport current per filament

- $B_e = 5 \text{ mT}$
- $I_{ac} = 8 \text{ Amps}$
- $f = 1000 \text{ Hz}$

<table>
<thead>
<tr>
<th>Filaments</th>
<th>Pos Int Current (A)</th>
<th>Pos Current Fit (A)</th>
<th>Neg Int Current (A)</th>
<th>Neg Current Fit (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament#1</td>
<td>-1.93</td>
<td>2.50</td>
<td>2.30</td>
<td>-2.30</td>
</tr>
<tr>
<td>Filament#2</td>
<td>-0.88</td>
<td>1.39</td>
<td>1.15</td>
<td>-1.10</td>
</tr>
<tr>
<td>Filament#3</td>
<td>-1.01</td>
<td>1.00</td>
<td>0.86</td>
<td>-1.32</td>
</tr>
<tr>
<td>Filament#4</td>
<td>-0.89</td>
<td>1.40</td>
<td>1.07</td>
<td>-1.39</td>
</tr>
<tr>
<td>Filament#5</td>
<td>-1.10</td>
<td>1.50</td>
<td>1.18</td>
<td>-1.50</td>
</tr>
<tr>
<td>Filament#6</td>
<td>-1.84</td>
<td>2.20</td>
<td>1.80</td>
<td>-2.20</td>
</tr>
</tbody>
</table>
Magnetic field profiles

- Magnetic field profiles for different thicknesses:
 - 120/15 µm
 - 120/30 µm
 - 120/60 µm

- The graphs show the magnetic field strength (B, mT) and the phase angle (φ, deg) as functions of position (x, µm).

- The color bar on the right indicates the magnetic field strength range from 0 to 40 mT.
Current density profiles

- 120/15 µm
- 120/30 µm
- 120/60 µm

The diagrams illustrate the current density profiles with varying x (µm) values and φ (deg) for different configurations.
AC losses

![AC losses graph]

- separ 15
- separ 30
- separ 60
- separ 90

AC losses (W/m)

Time (s)
Conclusions

- Performed TRMOI measurements on YBCO multifilamentary films
- Developed FEM model in Comsol for studying current density and field profiles in HTS
 - Very good agreement with measurements
- Used model to study influence of inter-filament distance ("magnetic coupling")
 - Current/field profiles and AC losses change
- Model will be used to optimize geometry