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Abstract: The Levitron c© offers an in-
teresting demonstration of natural magnetic
levitation using permanent magnets. It is
composed by a small magnetized top and
a circular magnetized base with a hole on
its centre. The top is placed in an area
where magnetic field configuration and gyro-
scopic torques allow the existence of a locus
of stable equilibrium. In this paper, we in-
tend to dimension and realize a Levitron c© in
laboratory, starting from second-hand com-
ponents. To that end, these components
are first identified (in terms of volume mag-
netization) by comparing magnetic induc-
tion measurements to induction estimated
through COMSOL finite element models.
Then, a perturbation force analysis is per-
formed to derive the locus of stable equilib-
rium. Stability is obtained when top axial
and radial excursions are compensated by
opposite perturbation forces. We compare
three different methods for the estimation
of forces in our application, two based on
the virtual work theorem and one perform-
ing numerical integration of the classical ex-
pression of force between magnets. Results,
after being compared with a simple analyt-
ical model available in litterature, are actu-
ally employed to create a Levitron c© using
identified components.
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1 Introduction

Even if common people are more familiar
with the attractive aspect of magnetic forces
(lifting electromagnets, etc.), magnetic re-
pulsion forces require our interest, for the
numerous possibilities they offer. Indeed, in

a correctly designed system, gravity can be
overcome without the necessity of a mate-
rial structure to be present. We thus under-
stand the reason why engineers are particu-
larly concerned with the magnetic levitation
phenomenon these years (e.g. magnetic lev-
itation trains, such as Japanese Maglev and
German Transrapid).

The impossibility to maintain a magne-
tized body in stable levitation using static
fields has been proven in 1842 by Earnshaw1.
Thus, to make magnetic levitation viable,
several possibilities have been investigated.
Numerous applications, such as Japanese
Maglev, are based on superconductor levi-
tation. Indeed, superconductors can be con-
sidered as perfect diamegnetic bodies (µr '
0), which have the property to repel ap-
plied magnetic fields, and are not embraced
in Earnshaw theory. Other solutions, which
include a dynamical aspect into the system
to avoid Earnshaw’s theorem limitations, are
also currently available. Servomechanisms
are for instance emlployed to assure mag-
netic levitation : the German Transrapid
motions are continuously adjusted through
a feedback loop which regulates the current
flowing in electromagnet windings. Levita-
tion due to induced currents is also feasi-
ble : an iron plate placed in an alternating
magnetic field can be lifted by the Laplace
forces acting on eddy current loops. Finally,
we speak about gyroscopic levitation when a
rotating magnet is maintained in stable levi-
tation by gyroscopic effects. The Levitron c©,
that we intend to study during this paper,
belongs to this last category.

A Levitron c© is composed by a top (a
non-magnetic spindle inserted in a flat, or

1 Earnshaw theorem precludes the existence of potential extrema for a static configuration of electric (or mag-
netic) particles, thus forbidding stable equilibrium.
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toröıdally shaped, permanent magnet) and
by a magnetized base with a circular hole
on its centre. An unmagnetized guide is
also required in order to bring the rotating
top into the locus of stable equilibrium (fig-
ure 1). Gyroscopic torques acting on the
spinning top maintain it in a nearly vertical
alignment, so as to prevent it being flipped
over. Therefore, strong dipole-dipole repul-
sion forces can suspend the top against grav-
ity, in a locus of stable equilibrium.

Figure 1: the Levitron c© ([7])

This work aims to dimension and realize a
Levitron c© in laboratory, using second hand
components such as ferrite permanent mag-
nets from old speakers and Ne-Fe-B mag-
nets. To do so, magnetic component param-
eters are first identified (volume magnetiza-
tion M). This is done by comparing mag-
netic induction measurements along magnet
z axis, obtained via a Hall effect gaussmeter,
and the induction estimated through COM-
SOL Multiphysics models (section 3). Then,
a perturbation force analysis is applied to
derive the locus of stable equilibrium : sta-
bility is obtained when top radial or axial
excursions are compensated by opposite per-
turbation forces (section 4). Top mass is
thereafter estimated by opposing magnetic
force exerted on it to gravity. Three meth-
ods will be compared for the computation of
magnetic forces, two based on virtual work
theory and one performing the numerical in-
tegration of classical expression of forces be-
tween permanent magnets (subsection 4.2).
Finally, after being compared with a simple
analytical model available in litterature ([7]
and [8]), results will be employed to create a
Levitron c© using identified components.

It is important to note that this paper
focuses on magnetic aspects only, in order
to derive conditions assuring stable levita-
tion. Mechanical aspects are not adressed
in our study : the impact of top rotation
speed against stability is for instance not
discussed. However, the authors are con-
vinced that their approach can be used as
a base for the comprehension of the complex
phenomenolgy of the Levitron c©, and recom-
mend [5] and [6] for more detailed models.

2 Numerical model

We employed second-order Lagrangian
tetrahedron to discretize the problem geom-
etry. Due to the absence of real currents,
the total magnetic scalar potential ψ was ap-
proximated on the nodal elements, leading
to the following local form :

Ω : − µ0
~∇(~∇ψ) + µ0

~∇ ~M = 0 (1)

Magnets constitutive law was the follow-
ing :

~B = µ0( ~M + ~H), (2)

where ~B is the magnetic induction, ~H the
magnetic field, and ~M the volume magneti-
zation, which is constant (rigid permanent
magnets) and uniformly z oriented.

The weak form was derived from equation
1 and the problem solved for ψ using COM-
SOL Multiphysics application mode AC/DC
module - Magnetostatics - No Currents. Ra-
dial excursions of the top, as explained in
4.1, forced us to use a 3D cartesian model
rather than a more simple axisymmetric 2D
one. A Conjugate Gradient resolution pro-
cedure showed fast convergence towards the
solution.

We imposed magnetic insulation along
system boundaries ( ~B~n = 0), which is equiv-
alent to set :

Γ :
∂ψ

∂n
= 0 (3)



Magnetic field and its derivatives were ob-
tained a posteriori using the following classi-
cal relation. If ψ̂ represent the approximated
value of scalar magnetic potential andNj the
basis functions at node j, we have, for sec-
ond order tetraedrons :

Hi =
10∑

j=1

∂Nj(x, y, z)
∂i

ψ̂j i = x, y, z (4)

Note that built-in COMSOL functions
should have been used for the same pur-
pose, but multiple calls to postinterp routine
for instance would have been too much time
consuming.

3 Magnetic component
identification

As no information is a priori available
for ferrite and Ne-Fe-B magnets, mag-
netic models need first to be derived. To
that end, magnetic induction measurements
along magnets z axis, obtained using a Hall
effect gaussmeter (figure 2), are compared
with induction from COMSOL Multiphysics
models.

Figure 2: Our measurment station, model 912
gaussmeter (RFL Industries Inc.)

An estimator, the SNSE (for Sum of Nor-
malized Squared Errors), defined as follows,
is computed to account for the curves ad-
justment quality :

SNSE =
n∑

i=1

(
Hi,mes −Hi,sim

Hi,mes
)2 (5)

Volume magnetization M is tuned in or-
der to minimize the SNSE. Figure 3 com-
pares two curves, the measured and the sim-
ulated one, for a particular magnet, and ta-
ble 1 summarizes identification results. The
Bi magnets are candidate for the Levitron c©

base construction whereas the Ti ones for the
top.

Figure 3: Magnet identification: magnetic field
along z axis versus distance from magnet

centre

Magnet code Mz[A/m] SNSE
B1 183000 0.078
B2 172500 0.024
B3 227500 0.024
B4 250000 0.076
B5 192000 0.038
T1 190000 0.219
T2 260000 0.021
T3 765000 0.1

Table 1: Magnets volume magnetization. All
magnets are in ferrite, except T3 which is in

Ne-Fe-B

4 Stability analysis

4.1 Method

For stable equilibrium to exist, small dis-
placements of the top in any direction should
be compensated by opposite forces, which
would replace it in its previous position. In
other words, force field lines should all point
inwards, towards the equilibrium position,
which means that the divegence of the force
field should be negative.



However, Earnshaw’s theorem states that
such a situation cannot be encountered with
static magnetic fields. In the Levitron c©, the
spinning top acts as a gyroscop, preventing
its magnetic field to align itself in the same
direction as that of the base. This fliping
phenomenon, combined with top precession
and nutation motions, allow the existence of
a stable equilibrium area, where gravitation,
magnetic and gyroscopic forces are compen-
sated.

In our approach, based on [7], these two
motions (precession and nutation) are ig-
nored (orientational stability is considered
as given), while assumptions are made about
the top orientation during excursions around
equilibrium position. More sophisticated
models, which account for the complex dy-
namic of the Levitron c©, are available in lit-
terature ([5], [6]).

Two models ([7]) are investigated in this
work. In the first, we consider that the
top is spinning so rapidly that gyroscopic
action maintains its magnetic moment per-
fectly aligned with z axis, irrespective of ra-
dial or axial excursions :

~M = Mz~uz (6)

Magnetization norm is supposed constant
(rigid permanent magnets). The second
model assumes that the top remains paral-
lel to the base magnetic field during radial
or axial excursions around equilibrium, phe-
nomenon well observed in practice :

~M = M
~H∥∥∥ ~H

∥∥∥
(7)

Geometry configuration during radial ex-
cursions forced us to adopt a tridimensional
model instead of a simpler axisymmetric
one, as it can be observed on figure 4.

Basing on these considerations, our ap-
proach for the design of the Levitron c© will
be the following. Axial (i.e. z oriented) and
radial perturbation forces acting on the top
will be computed from finite element simu-
lations, for the two models (equations 6 and
7) and for different positions of the top along
z axis. An equilibrium area will then be

derived, considering the fact that stability
is assured when perturbations are compen-
sated (i.e. when perturbation force is op-
posite to displacement direction). Top mass
will then be estimated by opposing magnetic
force exerted on the top in stability area to
gravity.

Figure 4: Tridimensionnal model of our
Levitron c©

4.2 Force computation

Three methods are investigated for the
computation of perturbation forces from fi-
nite element simulations.

4.2.1 Numerical integration

The force exerted on a permanent mag-
net of magnetization ~M placed in an exter-
nal magnetic field ~H (i.e. the base magnetic
field) is given by ([2]) :

~F = µ0

∫∫∫

Ω

( ~M ~∇) ~HdΩ, (8)

and we have :

Fx = µ0

∫∫∫

Ω

(Mx
∂Hx

∂x
+My

∂Hx

∂y

+Mz
∂Hx

∂z
)dΩ

Fy = µ0

∫∫∫

Ω

(Mx
∂Hy

∂x
+My

∂Hy

∂y

+Mz
∂Hy

∂z
)dΩ

Fz = µ0

∫∫∫

Ω

(Mx
∂Hz

∂x
+My

∂Hz

∂y

+Mz
∂Hz

∂z
)dΩ

(9)



Results from COMSOL simulations are
transferred to MATLAB, where integrals in
9 are computed by performing a second or-
der Gauss quadrature on the top subdo-
main. A MATLAB script is used to loop
the procedure by continuously adjusting the
system geometry, respecting equations 6 or
7, in order to derive the stability area for
a given arrangement of available magnets.
This method will be refered as NUMINT
throughout this paper.

4.2.2 Coulomb Virtual Work
method

In [3], the Virtual Work principle is em-
ployed to derive an expression for the mag-
netic force exerted on a rigid body, using
the local jacobian derivative method. For
a H oriented formulation, the magnetic co-
energy is differentiated along the virtual dis-
placement i, at constant scalar potential ψ,
so as to obtain, for the force component
along i axis :

Fi =
∑

e

(
∫∫∫

Ve

− ~BG−1 ∂G

∂i
~HdVe+

∫∫∫

Ve

(
∫ B

0

BdH) ‖G‖−1 ∂ ‖G‖
∂i

dVe),

(10)

In equation 10, the sum extends to all el-
ements e of the model, i stands for the di-
rection of the virtual displacement and Ve

represents the volume of the considered ele-
ment. G is the jacobian matrix of the trans-
formation which maps global coordinates to
local element coordinates. All the elements
belonging to the body are displaced all to-
geteher along i direction. Three categories
of elements appear ; the fixed, the entirely
movable and the distorted ones (figure 5). It
can be shown that the co-energy is only mod-
ified in elements belonging to the third cat-
egory, i.e. in air elements surrounding the
movable body (top magnet), so that equa-
tion 10 is only computed on these elements.
The amount of distorted elements can be
arbitrarily fixed, but we chose the tetrahe-
dron layer directly surrounding the top sub-
domain for simplicity. In that case, equation
10 becomes :

Fi =
∑

e

(
∫∫∫

Ve

−µ0
~HG−1 ∂G

∂i
~HdVe+

∫∫∫

Ve

µ0

∥∥∥ ~H
∥∥∥

2

2
‖G‖−1 ∂ ‖G‖

∂i
dVe),

(11)

This procedure will be refered from now
as Coulomb Virtual Work method (CVW).

Figure 5: Coulomb Virtual Work method.
Equation 11 is only computed on red elements

4.2.3 Local Virtual Work method

Unlike the CVW approach, where a set
of nodes is simultaneously displaced, the lo-
cal virtual work method (LVW) displaces a
single node at a time ([4] and [1]). Only
the co-energy (for a H oriented formulation)
corresponding to the elements surrounding
that node is modified during the virtual dis-
placement. Thus, a local force, associated
to the node, can be obtained by differenti-
ating co-energy versus virtual displacement
at constant scalar magnetic potential. De
Medeiros et.al. derived the force expression
in the case of rigid permanent magnets ([4]) :

Fik =
µ0

2

∑
ek

∫∫∫

Vek

(−G−1 ∂G

∂i
~H( ~H + ~M)+

( ~H + ~M)(−G−1 ∂G

∂i
~H) + ( ~H + ~M)

( ~H + ~M) ‖G‖−1 ∂ ‖G‖
∂i

)dVek

(12)

Terms in equation 12 have the same sig-
nification than in equation 11. ek stands for
the elements surrounding node k, and global
force is obtained by summing nodal forces on
the nodes of the magnet.



5 Results and discussion

Numerous combinations of base candidate
and top candidate magnets were possible
and investigated, but only the results for the
B5 − T3 configuration will be exposed, as it
is the authors final choice, for practical rea-
sons.

Figure 6 shows the evolution of z compo-
nent of magnetic force acting on the top ver-
sus distance between the two magnets. We
are only interested in the piece of curve with
a negative slope, as it corresponds to an area
where axial perturbations (i.e z oriented)
are compensated. Forces obtained with the
three methods (NUMINT, CVW and LVW)
are represented. We observe that, consider-
ing the small value of total force in our con-
figuration (around 0.2 N), CVW and LVW
methods suffer from an exagerate sensibility
to top position and meshing. For that rea-
son, other following results will be exposed
for the NUMINT method only.

Figure 6: Force exerted on top, computed with
the three methods NUMINT, CVW and LVW

In addition, to pretend to stability, radial
perturbation forces have also to be compen-
sated when the top performs radial excur-
sions from z axis. Figure 7 accounts for these
forces for the two models exposed in section
4.1, i.e. when ~M is rigidly z oriented or
when it is directed along the base magnetic
field. We observe that only the second model
gives satisfactory results: we can find an area
along z axis where axial and radial perturba-
tion forces are simultaneously compensated,
while it is not possible for the first model.

This should not astonish us, since the second
model is far more close from what we exper-
imentally observe with a Levitron c©. We ob-
tain stable equilibrium between 62 mm and
68 mm, the lower limit corresponding to a
top mass of 22.8 g and the upper to 22.3 g.

Figure 7: Radial perturbation forces, for the
two M oriented models (NUMINT method)

These constatations have been employed
to realize a Levitron c© in laboratory. For the
B5 − T3 configuration, stability have been
observed between 62 mm and 68 mm (close
to the simulated interval), for a top weight-
ing between 25.9 g and 26.2 g. The gap
between simulated and measured data can
be explained by emphasizing measurement
errors. Indeed, magnetic induction along
z axis magnets have been measured with
a gaussmeter, using a probe manipulated
by hand, thus leading to inevitable approx-
imations. When favorable conditions were
gathered (base magnet carefully aligned with
the vertical, etc.), stable magnetic levitation
have been observed for 1min22s (figure 8).

Figure 8: Our Levitron c©



Our approach Magnetic dipole approach[8] Experimental results
Stability Area [mm] 62− 68 61− 66 62− 68

Top mass [g] 22.3− 22.8 19.7− 20.3 25.9− 26.2

Table 2: Simulated and experimental results, for the B5 − T3 configuration (second M model)

Our results can be compared with a sim-
ple analytical model avalaible in litterature
([7]), in which the top is considered as a
ponctual magnetic dipole. In [8], the au-
thors computed a locus of stable equilibrium
from 61 mm to 66 mm for the same magnet
configuration, corresponding to top masses
from 19.7 g to 20.3 g. All the results are
summarized in table 2. We can observe that
even if stability areas coincide for the two
approaches, mass is closer from experimental
measurements for the approach presented in
this paper, which can be easily understood
as magnetic forces are here computed by nu-
merically integrating over the entire top, in-
stead of considering simple dipole repulsion
forces.

6 Conclusion

In this work, a finite element based pro-
cedure for the design of a Levitron c©, us-
ing second-hand components, has been pre-
sented. After identifying magnets, a pertur-
bation analysis has been performed to derive
the locus of stable equilibrium, as well as top
mass, for diverse magnet combinations. We
saw that the top flipping motion was indis-
pensable to assure stability: its magnetiza-
tion vector indeed needs to adopt the same
direction than the base magnetic field dur-
ing radial excursions, without which axial
and radial perturbations cannot be simulta-
neously compensated. We also showed that
virtual work based methods for force compu-
tations, whereas giving satisfactory results
in other general cases, suffer from an exager-
ate sensibility to top position and meshing,
considering the small value of forces involved
in our study. Thus, numerical integration
of the classical expression of forces exerted
on permanent magnets was successfully em-
ployed for our purpose.

Our results were compared with a sim-
ple analytical model, based on [7] and [8],
in which the top is assimilated to a ponc-
tual magnetic dipole, and with experimen-

tal measurements. We showed that stability
areas were in good agreement with experi-
ence for the two models, whereas our esti-
mation of the top mass was closer to real-
ity, which can be easily explained as forces
are estimated in our case by integrating over
the entire top rather than considering simple
dipole repulsion forces.
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