A FEM Study of displacement sensor based on L-L Magnetostrictive/Piezoelectric block magnetoelectric composite material

Qingwei Lau, PhD candidate

School of ME, SJTU

Excerpt from the Proceedings of the 2016 COMSOL Conference in Shanghai
Introduction

- **Magnetoelectric effect (ME)** is the phenomenon of inducing magnetic (electric) polarization by applying an external electric (magnetic) field.
Polarization

Mech. Strain

ε

ε

σ

P

E

M

H

N

S

Magnetization

Magneti-

zation

P

+-

++

+-

++

+-

++
Product Property:

\[ME_{H\text{effect}} = \frac{\text{magnetic}}{\text{mechanical}} \times \frac{\text{mechanical}}{\text{electric}} \]

\[ME_{E\text{effect}} = \frac{\text{electric}}{\text{mechanical}} \times \frac{\text{mechanical}}{\text{magnetic}} \]
- **Magnetostrictive effect** is a property of ferromagnetic materials that causes them to change their shape or dimensions during the process of magnetization.

- **Piezoelectric effect** is the ability of certain materials to generate an electric charge in response to applied mechanical stress.
Magnetostrictive layer

Piezoelectric layer

Magnetostrictive rod

Piezoelectric plate

Fixed boundary with rigid frame
Modelling

- Magnetostrictive nonlinear constitutive equation

\[
\varepsilon_i = \frac{3}{2} \lambda_s \left(\left(\frac{m_i}{M_i} \right)^2 - \frac{1}{3} \right)
\]

\[
\varepsilon_\perp = \lambda_s \left(\frac{M}{M_s} \right)^2, \quad \varepsilon_\parallel = -\frac{\lambda_s}{2} \left(\frac{M}{M_s} \right)^2
\]

\[
H_e = H + \alpha M + H_\sigma
\]

\[
\sigma = E \left[\varepsilon - \lambda(\sigma, H) \right]
\]

\[
B = \mu_0 H + \mu_0 M(s, H)
\]

\[
\varepsilon_x = -\frac{\lambda_s}{2} \left(\frac{M_x}{M_s} \right)^2, \quad \varepsilon_y = -\frac{\lambda_s}{2} \left(\frac{M_y}{M_s} \right)^2, \quad \varepsilon_z = \lambda_s \left(\frac{M_z}{M_s} \right)^2
\]
Modelling

- Piezoelectric linear constitutive equation

\[\sigma_e = c_e \varepsilon_e - eE \]

\[D = e^T \varepsilon_e + \kappa E \]
Implementation with COMSOL
Implementation with COMSOL
Implementation with COMSOL

- Geometry
Implementation with COMSOL

- **Realization of PZT material model**
 - The linear constitutive equations for piezoelectric material
 \[s - S_0 = c_E \varepsilon (\varepsilon - \varepsilon_0) - e^T E \]
 \[D = D_r + e (\varepsilon - \varepsilon_0) + \kappa E \]
 - For solid mechanics, the elastic relations
 \[\varepsilon = \frac{1}{2} [(\nabla u)^T + \nabla u] \]
 \[\sigma = s \]
 \[-\nabla \sigma = F_v \]
 - For electrostatics, the electrical relations:
 \[\nabla E = \rho_v \]
 \[E = -\nabla V \]
Implementation with COMSOL

- Realization of magnetostrictive material model
 - The elastic relations

\[
\sigma = c_E \varepsilon_0 (\varepsilon - \varepsilon_0)
\]

\[
\varepsilon_0 = \text{diag} \left(\frac{-\lambda}{2}, \frac{-\lambda}{2}, \frac{-\lambda}{2} \right)
\]
<table>
<thead>
<tr>
<th>Properties</th>
<th>PMN–28PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ, kg m$^{-3}$</td>
<td>8060</td>
</tr>
<tr>
<td>c_{11}^E, GPa</td>
<td>115.4</td>
</tr>
<tr>
<td>c_{12}^E, GPa</td>
<td>103.4</td>
</tr>
<tr>
<td>c_{13}^E, GPa</td>
<td>102.6</td>
</tr>
<tr>
<td>c_{33}^E, GPa</td>
<td>114.1</td>
</tr>
<tr>
<td>c_{44}^E, GPa</td>
<td>68.9</td>
</tr>
<tr>
<td>c_{66}^E, GPa</td>
<td>65.8</td>
</tr>
<tr>
<td>$\varepsilon_{11}^S / \varepsilon_0$</td>
<td>925</td>
</tr>
<tr>
<td>$\varepsilon_{33}^S / \varepsilon_0$</td>
<td>813</td>
</tr>
<tr>
<td>e_{13}, C m$^{-2}$</td>
<td>-3.4</td>
</tr>
<tr>
<td>e_{15}, C m$^{-2}$</td>
<td>10.1</td>
</tr>
<tr>
<td>e_{33}, C m$^{-2}$</td>
<td>20.5</td>
</tr>
</tbody>
</table>
Implementation with COMSOL

- Boundary conditions & Mesh
Results
[Magnetic field, Z component along MS rod's Z axis (A/m)]

- Magnetic field, Z component / A/m
- Z axis position of MS rod / mm

Graph showing the variation of magnetic field along the Z axis of the MS rod as the Z axis position changes.
Total displacement along MS rod's Z axis (mm)
Thanks.