Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

Xavier Sillen

Belgian Nuclear Research Centre (SCK•CEN)
Thermal impact of the disposal of radioactive waste in clay

- Geological disposal & problem specification
 - General Context
 - Typical repository layout
 - The thermal issues associated with the disposal of heat-emitting wastes

- T: Thermal evolution of a typical repository
 - Typical temperature evolution
 - Model equation, implementation, results

- T-H: Effect of / on groundwater flow
 - Thermo-hydraulic modelling of the far field
 - Model equations, implementation, results

- Basic T-H-M: Uplift
 - Thermo-hydro-mechanical modelling of the far field
 - Model equations, implementation, results

- Conclusions
Geological disposal of long-lived, highly radioactive wastes

- **What can we do with our radioactive waste?**
 - From nuclear power plants, medical, industrial activities
 - Main challenge = protection of men/environment during a very long period of time (10^4 ... 10^5 ... 10^6 years...)

- **Geological Disposal of high-level waste**
 - Accepted in a wide range of countries and by the EC
 - Engineered barriers + geological barrier: compatible with time scales associated with long-lived radioactive wastes:
 - Vitrified high-level waste (VHLW, reprocessed, COGEMA)
 - Spent fuel

- **Clays as potential hosts for a repository**
 - Very low permeability \rightarrow solute transport by molecular diffusion
 - Sorption \rightarrow delay and spread releases of radionuclides in time
 - If plastic clay: self-sealing, self-healing
 - Not a resource
Typical repository design

- Access shafts
 - Height: 230 m
 - Inner diameter: 6 m

- Connection gallery
 - Length: 400 m
 - Inner diameter: 2.0 m

- Transport galleries for vitrified waste
 - Length: 800 m
 - Spacing: 400 m
 - Inner diameter: 2.0 m

- Connection gallery
 - Length: 400 m
 - Inner diameter: 2.0 m

- Neogene aquifer
- Boom Clay

- EDZ

- Envelope
 - Buffer
 - Overpack
 - Filler

- Waste container
 - Waste form

Looks like a radiator !?
Some radioactive wastes generate **a considerable amount of heat** due to radioactive decay, **even after interim storage** (50-80 years).

- Example: vitrified high-level waste (COGEMA)

![Graph showing thermal output over time]

Time after waste production (years)

Thermal output (W/thHM)

- Vitrified HLW (Put)
- Vitrified HLW (ORIGEN)

Time of disposal
Thermal issues associated with the disposal of heat-emitting waste

- **How hot will it be?**
 - Depends on waste type (radionuclide inventory)
 - Engineered barriers & rock thermal properties
 - Repository **design parameters**
 - Disposal **galleries spacing**
 - Waste **package pitch** within disposal galleries

- **What could be the consequences of ΔT?**
 - Chemical/geochemical?
 - Thermal degradation of engineered barriers & waste forms?
 - Solubility & migration parameters of radionuclides,...?
 - Thermal decomposition of organic matter in Boom Clay, CO₂?
 - Hydrogeology?
 - **Far field: thermal impact on the aquifer?**
 - Mechanical?
 - Near field: Thermo-Hydro-Mechanics of EBS, host rock?
 - **Far field: uplift?**
Typical thermal loading for a disposal system:

- VHLW: ~1 kW per supercontainer after 60 years interim storage
- Supercontainer length = 4.2 m (= package pitch: no spacing)
- Gallery spacing = 50 m

Peak temperatures?

- Conservative: no flow in aquifer

~240 W/m²
(at time of disposal)
Reference geometry

\(T, T-H \& T-H-M \) model reduction

a) 3D world

b) 2D model, T only
c) 1/2 2D model
d) 2D model, T-H in aquifer
e) 1D T-H-M model

Neogene aquifer
Clay layer
Deeper layers
Disposal galleries
Model equations:

<table>
<thead>
<tr>
<th></th>
<th>Clay</th>
<th>Aquifer (sand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (thermal)</td>
<td>$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) = \nabla \cdot (\lambda \nabla T) + q$</td>
<td>$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \nabla \left(\rho_w c_{p,w} T \mathbf{u} \right) = \nabla \cdot (\lambda \nabla T)$ $\mathbf{u} = 0$</td>
</tr>
<tr>
<td></td>
<td>$\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}$</td>
<td></td>
</tr>
<tr>
<td>H (hydro)</td>
<td>$\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \Lambda \frac{\partial T}{\partial t}$</td>
<td>$\frac{\partial}{\partial t} (\eta \rho_w) = \nabla \cdot (\rho_w \mathbf{u})$</td>
</tr>
<tr>
<td></td>
<td>$\Lambda = \left(\frac{\partial p}{\partial T} \right)_{\text{undrained, oedometer}}$</td>
<td>with $\mathbf{u} = \frac{k}{\mu} \left(\nabla p - \rho_w \mathbf{g} \right)$ (Darcy)</td>
</tr>
<tr>
<td>M (mech)</td>
<td>$\varepsilon_z = \frac{\Delta p + \beta_d K_d \Delta T}{\lambda_d + 2G}$</td>
<td>$\varepsilon_z = \frac{\beta_d K_d \Delta T}{\lambda_d + 2G}$</td>
</tr>
</tbody>
</table>
Thermal evolution, boundary conditions & mesh

a) 3D world

1. Neogene aquifer
2. Clay layer
3. Deeper layers
4. Disposal galleries

b) 2D model
c) 1/2 2D model

\[\Delta T = 0 \]

\[\lambda_{\text{water}} \]
\[\rho_{\text{water}} \]
\[c_{\text{p,water}} \]

Source \(q(t) \)

No heat flux

\[\Delta T = 0 \]

or

No heat flux

Z = -175 m
Z = -220 m
Z = -285 m

Z = -1020 m
Thermal evolution, Vertical ΔT profiles

-300
-200
-100
0
1
2
5
10
20
50
100
200
500
1000
2000
5000
1 year
2 years
5 years
10 years
20 years
50 years
100 years
200 years
500 years
1000 years
2000 years
5000 years
Boom Clay
Neogene

Temperature increase ΔT (°C)

z (m)
How hot will it be?

- Waste
- Engineered Barriers System (EBS)
- Clay
- Aquifers
How hot will it be?

- Example: calculated thermal field around a repository for vitrified waste

- Thermal calculation only, heat transport by conduction (Fourier’s law). Temperature field 100 years after disposal
Reference geometry

T, T-H & T-H-M model reduction

a) 3D world

b) 2D model, T only

c) 1/2 2D model

d) 2D model, T-H in aquifer

e) 1D T-H-M model
Model equations: **T-H**

<table>
<thead>
<tr>
<th></th>
<th>Clay</th>
<th>Aquifer (sand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (thermal)</td>
<td>[\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) = \nabla \cdot (\lambda \nabla T) + q]</td>
<td>[\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \nabla \cdot \left(\rho_w c_{p,w} T \mathbf{u} \right) = \nabla \cdot (\lambda \nabla T)]</td>
</tr>
<tr>
<td></td>
<td>[\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}]</td>
<td></td>
</tr>
<tr>
<td>H (hydro)</td>
<td>[\frac{\partial}{\partial t} p = \alpha_H \frac{\partial^2 p}{\partial t^2} + \frac{\partial T}{\partial t}]</td>
<td>[\frac{\partial}{\partial t} (\eta \rho_w) = \nabla \cdot (\rho_w \mathbf{u})]</td>
</tr>
<tr>
<td></td>
<td>[\Delta \left(\frac{\partial p}{\partial T} \right)_{\text{undrained, oedometer}}]</td>
<td>with [\mathbf{u} = \frac{k}{\mu} \left(\nabla p - \rho_w \mathbf{g} \right)] (Darcy)</td>
</tr>
<tr>
<td>M (mech)</td>
<td>[\varepsilon_z = \frac{\Delta p + \beta_d K_d \Delta T}{\lambda_d + 2G}]</td>
<td>[\varepsilon_z = \frac{\beta_d K_d \Delta T}{\lambda_d + 2G}]</td>
</tr>
</tbody>
</table>

Very low k, no convective heat transport
COMSOL Multiphysics implementation and auxiliary equations

- Use of Earth Science Module (convenient, but not required)
 - \(H \): Darcy's law (esdl)
 - \(T \): Conduction & convection in porous media (eshcc)
 - Water density: \(\rho = 1000.2 - 0.005 \times T^2 \) [kg/m³] (\(T \) in °C)
 - Water viscosity: \(\mu = \rho \cdot 9.2 \times 10^{-7} \cdot \exp(2050/(273.15+T)) \) [Pa·s]
- No convection in low-permeability clay & geological layers below
 - Simply do not solve for flow in these subdomains 😊
- Coupling of heat and flow equations:
 - \(H \rightarrow T \): Use velocities from esdl in eshcc
 - \(T \rightarrow H \): COMSOL > Physics > Equation system > Subdomain settings
T-H evolution, effect of local flow pattern

200 years after disposal
T-H evolution, effect of local flow pattern

- 20 m above a gallery
- Top of Boom Clay
- 100 m below ground level
- 50 m below ground level
- 20 m below ground level

Temperature increase Π (°C)

Time (years)
T-H evolution, convection cells only in the absence of base flow!
Cause of uplift: **thermal expansion**

<table>
<thead>
<tr>
<th>Material</th>
<th>Expansion coeff. $\text{m}^3\text{/m}^3 \text{ °C}^{-1}$</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay, drained</td>
<td>3×10^{-5}</td>
<td>β_d</td>
</tr>
<tr>
<td>Clay, undrained</td>
<td>13×10^{-5}</td>
<td>β_u</td>
</tr>
<tr>
<td>Water</td>
<td>21×10^{-5}</td>
<td>β_w</td>
</tr>
<tr>
<td>Sand, drained</td>
<td>3×10^{-5}</td>
<td>β_d</td>
</tr>
</tbody>
</table>

- **Aquifers**: excess water volume can quickly be accommodated
- **Clay**: overpressures, which slowly dissipate
Terzaghi's analogy adapted to $T \rightarrow H M$

- $\Delta T \rightarrow$ thermal expansion (α)
- $\alpha_{\text{water}} > \alpha_{\text{clay}}$

![Diagram showing the analogy with porous medium, skeleton, and fluid changing with temperature](image)
Reference geometry

T, T-H & **T-H-M** model reduction

a) 3D world

Neogene aquifer

Clay layer

Deeper layers

Disposal galleries

b) 2D model, T only

c) 1/2 2D model

d) 2D model, T-H in aquifer

e) 1D T-H-M model
Model equations: T-H-M

<table>
<thead>
<tr>
<th>Clay</th>
<th>Aquifer (sand)</th>
</tr>
</thead>
</table>
| **T** (thermal) |   \[
\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) = \nabla \cdot (\lambda \nabla T) + q \]
\[
\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}
\]   \[
\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \nabla \cdot \left(\rho_w c_{p,w} T u \right) = \nabla \cdot (\lambda \nabla T)
\]

1D, \(u = 0 \)

| **H** (hydro) |   \[
\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \Lambda \frac{\partial T}{\partial t}
\]
\[
\Lambda = \left(\frac{\partial p}{\partial T} \right) \text{ undrained, oedometer}
\]   \[
\frac{\partial}{\partial t} (\eta \rho_w) = \nabla \cdot (\rho_w \mathbf{u})
\]

1D, heat transport by conduction (Darcy)

| **M** (mech) |   \[
\varepsilon_z = \frac{\Delta p + \beta_d K_d \Delta T}{\lambda_d + 2G}
\]   \[
\varepsilon_z = \frac{\beta_d K_d \Delta T}{\lambda_d + 2G}
\]
Summary of model equations (details in Picard & Giraud, 1995)

- Heat transport: \[\frac{\partial T}{\partial t} = \alpha_T \frac{\partial^2 T}{\partial z^2} + \frac{q}{\rho_b c_{p,b}} \]

- Porewater pressure dissipation: \[\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \lambda \frac{\partial T}{\partial t} \]

- Vertical deformation: \[\varepsilon_z = \frac{\Delta p + \beta_d K_d \Delta T}{\lambda_d + 2G} \]

- Solve two 1D diffusion equations, then integrate \(\varepsilon_z \) over depth

"Coupling" in COMSOL Multiphysics:
- COMSOL > Physics > Equation system > Subdomain settings
Uplift evolution

note that most of the uplift is due to thermal expansion of poorly drained clay (water)
Conclusions

- Modelling the geological disposal of radwaste
 - Large time scales
 - Multiple spatial scales (near field, far field)
 - Many processes involved, some of these are strongly coupled

- Complexity?
 - Multidisciplinary rather than intrinsically complex
 - Large uncertainties, emphasize robust modelling (simplifications)

- How COMSOL Multiphysics fits in the picture
 - **VERSATILITY**: 1 toolbox, many possible uses in R&D programme
 - Thermal evolution of the far field (this presentation)
 - Phenomenological analysis: near field THM, buffer THMC, chemo-osmosis, reactive transport, unsaturated flow, multiphase flow,…
 - Performance Assessment: radionuclides release & transport
Thank YOU for your attention.

Thanks go also to

ONDRAF/NIRAS,
the Belgian National Radioactive Waste Agency,
for continued support & funding.