Simulation of the Destruction Effects in CMOS-Devices after Impact of Fast Transient Electromagnetic Pulses

M. Rohe, S. Korte and M. Koch

Leibniz Universität Hannover

In Cooperation with

Bundeswehr Research Institute for Protective Technologies and NBC Protection in Munster

Institute for the Basics of Electrical Engineering and Measurement Science
Cand.-el. Dipl.–Ing. Melanie Rohe
Overview

- Motivation
- Threats
- Disturbing Signals
- Microscopical Analysis
- Simulation of Breakdown
- Simulation of Melting Process
- Time Behavior of Electric Field and Temperature
- Summary
A problem has been detected and windows has been shut down to prevent damage to your computer.

If this is the first time you've seen this stop error screen, restart your computer. If this screen appears again, follow these steps:

Check to be sure you have adequate disk space. If a driver is identified in the stop message, disable the driver or check with the manufacturer for driver updates. Try changing video adapters.

Check with your hardware vendor for any BIOS updates. Disable BIOS memory options such as caching or shadowing. If you need to use Safe Mode to remove or disable components, restart your computer, press F8 to select Advanced Startup Options, and then select Safe Mode.

Technical information:

*** STOP: 0x0000007E (0xC0000005, 0xAF811695, 0xF7C3EAAA4, 0xF7C3E7A0)

What do you think at this moment, when these error message appears on your screen?

What does a flight controller think about?

...or a pilot?

And which consequences will it have, if this happens on an intensive care unit?
Motivation

Meaning of electronic systems for the world in the 21st century

- safety systems
- medicine
- economy
- traffic
- forces
Motivation

Meaning of electronic systems for the world in the 21st century

- safety systems
- medicine
- economy
- traffic
- forces
Motivation

Meaning of electronic systems for the world in the 21st century

- safety systems
- medicine
- *economy*
- traffic
- forces
Motivation

Meaning of electronic systems for the world in the 21st century

- safety systems
- medicine
- economy
- traffic
- forces
Motivation

Meaning of electronic systems for the world in the 21st century

- safety systems
- medicine
- economy
- traffic
- forces
Threats

- **NEMP** (Nuclear electromagnetic pulse)
- **IRA** (Impulse radiating antenna)
- **CIRA** (Collapsible IRA; microwave source embossed by explosive material)
- **ESD** (Electrostatic discharge)
Disturbing Signals

Electromagnetic pulse

Voltage on connecting line

Primary coupling path: Connecting lines
Disturbing Signals

Electromagnetic pulse
- double-exponential form

Voltage on connecting lines
- damped harmonic oscillation

Pulse parameter:
- $t_r = 7.5$ ns
- $t_{fwhm} = 180$ ns
- $E_{max} = 1290$ kV/m

Parameter of the coupled-in signal:
- $\alpha = 2.1 \cdot 10^8$ s$^{-1}$
- $f_1 = 230$ MHz
- $U_0 = 821$ V

Primary coupling path: Connecting lines
Coupling of electromagnetic pulses

Source	**Rise time**	**Pulse duration**
UWB | \(t_r = 100 \text{ ps} \) | \(t_{fwhm} = 2.5 \text{ ns} \)
EMP (fast) | \(t_r = 1.5 \text{ ns} \) | \(t_{fwhm} = 80 \text{ ns} \)
Nuclear explosion (NEMP) | \(t_r = 1 \text{ ns} - 5 \text{ ns} \) | \(t_{fwhm} > 100 \text{ ns} \)
EMP (middle) | \(t_r = 5 \text{ ns} \) | \(t_{fwhm} = 300 \text{ ns} \)
EMP (slow) | \(t_r > 10 \text{ ns} \) | \(t_{fwhm} = 500 \text{ ns} \)
Lightning (LEMP) | \(t_r = 1 \mu \text{s} - 2 \mu \text{s} \) | \(t_{fwhm} \approx 50 \mu \text{s} \)

Institute for the Basics of Electrical Engineering and Measurement Science
Cand.-el. Dipl.-Ing. Melanie Rohe
Microscopical Analysis
(rear section of an AC-/ACT-Inverter)
Simulation of Breakthrough (CMOS)

Criterion of breakthrough:

\[E_{BR,\text{SiO}_2} \approx 10^8 \text{ V/m} \]
\[E_{BR,\text{Si}} \approx 2 \cdot 10^7 \text{ V/m} \]

Simulation of the field strength characteristic:

\[E_{\text{max}} = 5.38 \cdot 10^7 \text{ V/m} < E_{BR,\text{SiO}_2} \] \(\Rightarrow\) no breakthrough over the whole period of time
\[E_{\text{max, Si}} = 2.04 \cdot 10^7 \text{ V/m} > E_{BR,\text{Si}} \] \(\Rightarrow\) Drain-Gate-Breakthrough at time \(t = 1 \cdot 10^{-9} \text{ s} \)

- but note, that there is no information about the depth \(\rightarrow\) faulty simulation results
Simulation of the temperature characteristic:

- $T_1 = 720 \text{ K} < T_{\text{Melting, AlSiCu}}$ → no destruction
- $T_{\text{max}} = 1092 \text{ K} > T_{\text{Melting, AlSiCu}}$ → melting of the conductor line at time $t \approx 0.8 \times 10^{-8} \text{ s}$

Criterion of melting:

$T_{\text{Melting, AlSiCu}} = 933 \text{ K}$

Simulation of Melting Process
Time behavior of electric field strength and temperature

- determination of the time of breakthrough is possible
- the destruction field strength can be determined \(\Rightarrow \) modifying the input variable until \(E_{\text{max}} = E_{BR} \)
- determination of the time of melting process is possible
Summary

- Microscopical analysis shows breakthroughs and melting processes → both processes can be simulated.
- Information got by the simulations:
 * time of breakdown
 * location of the position of the destruction
 * field strength required for destruction
- Simulation reproduces the measured results.
- Problems:
 * only a part of the whole structure could be simulated, because the models are very complex
 * thin and large structures → problems with mesh
Thank you for your attention!

Questions?