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Abstract: Physical-based nanofiltration models 
describe the interaction between the membrane 
and multi-ionic feed solutions. Generally 
speaking, membrane models yield permeate 
composition for specified feed concentration and 
operating conditions. The most successful 
nanofiltration models are those based in the 
combination of the Extended Nernst-Planck 
equation with the Donnan steric equilibrium. As 
permeate composition influences the transport 
across the membrane, the resulting equation 
system is implicit. Therefore, these models have 
been typically solved by using iterative 
procedures based on the Runge-Kutta method. 
Nevertheless, such procedures present 
convergence problem in some cases. In this 
paper, we present an implementation of the 
original Donnan Steric-partitioning Pore Model 
(DSPM) using COMSOL. Three different 
physical models were used and compared (PDE 
coefficient form, Convection and Diffusion, 
Nernst-Planck without electroneutrality). The use 
of COMSOL benefits from the possibility of 
using stabilization techniques and the 
representation and analysis capabilities.     
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1. Introduction 
 

A membrane is a permselective barrier able 
to selectively separate components from a 
solution when a driving force is applied.  

Nanofiltration (NF) is a pressure-driven 
membrane process with intermediate 
characteristics between ultrafiltration and reverse 
Osmosis. Nanofiltration membranes have pores 
with a diameter of the order of 1 nm and are able 
to effectively separate small molecules and 
polyvalent ions [1]. When dealing with ionic 
solutions, the existence of fixed charges in the 
membrane influences ion distribution inside the 
membrane (Figure 1). 

NF models are intended to obtain permeate 
composition as a function of feed composition 
and operating conditions. One of the most 
successful models is the Donnan Steric-
partitioning Pore Model (DSPM) [2], which is 
the basis of the most recent NF models. This 
model is suitable to describe the interaction 
between the membrane and multi-ionic solutions. 
The DSPM model uses the Extended Nernst-
Planck equation (ENP) to describe ion transport 
inside the pores under the effect of drag forces. 
In a 1D approach, radial effects are averaged and 
only concentration gradients along the membrane 
thickness are considered. At the membrane 
boundaries (feed and permeate side), ion 
partitioning between membrane and solution is 
defined by the steric-Donnan equilibrium. The 
concentration gradient is derived from the 
combination of the ENP equation with the 
electroneutrality condition. As the concentration 
gradient depends on permeate concentration, the 
solution is obtained through an iterative 
procedure integrating the concentration gradient 
using finite differences or a Runge-Kutta 
method. The main drawback of this procedure is 
the possibility of convergence problems [3].   

 

 
 
Figure 1. Solute concentration profiles in the 
membrane and the feed boundary layer. 
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2. Governing Equations 
 
Any membrane model aims to obtain solute 

concentrations in the permeate Ci,p from known 
solute concentrations at the feed wall C’i,f. These 
concentrations will be related through the solute 
concentrations in the membrane ci that are the 
state variables of the problem. 

The DSPM considers that the solute and 
solvent transport takes place in cylindrical pores 
of known effective radius rp and effective length 
Δx. The membrane has an effective membrane 
charge Xd.  

The pressure difference established between 
both membrane sides causes a solvent flow 
inside the pore of velocity V defined by the 
Hagen-Poiseuille equation (eq. 1). 

Solutes are drawn by convection, diffusion 
and electrical forces resulting in a solute flux, Ji, 
through the membrane. The solute transport is 
explained by the ENP (eq. 2) that differs from 
the Nernst-Planck equation on the use of drag 
coefficients for convection Ki,c, and diffusion 
Ki,d. Such coefficients are necessary to correct 
the convective and diffusive transport in the bulk 
solution for a solute confined in a pore. 
Expressions for the calculation of the drag 
coefficients can be found elsewhere [4, 5]. They 
exclusively depend on the ratio of the Stokes 
solute radius to the membrane pore radius λi (eq. 
3). The transport equation is subjected to a set of 
constraints and boundary conditions. The 
electroneutrality conditions (eq. 6 to 8) must be 
fulfilled in the feed solution, membrane and 
permeate respectively. Besides, the compositions 
in the membrane at the feed wall are related to 
the solute compositions at the membrane through 
the Donnan steric-partitioning condition (eq. 9); 
and the same for the compositions in the 
membrane and permeate solution (eq. 10). The 
steric-partitioning coefficient Φi used in these 
equations is calculated from the aforementioned 
ratio λi. These conditions must be fulfilled 
separately for each solute, but depend on the 
Donnan potential established at each membrane 
side. 
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3. Numerical Model 
 
In order to implement the concentration 

derivatives, one must take into account that the 
flux of component is related to its concentration 
through eq. 12:   

pii CVJ ,=      (12) 

Afterwards, by combining the ENP equation 
(eq. 2) with the permeate electroneutrality 
condition (eq. 8) the electrical gradient is 
obtained (eq. 13): 
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Then, from eq. 2, the gradient concentration 
for each component i can be expressed as a 
function of the state variables: 
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The set of equations 14 defines the 
membrane subdomain.  

Equations 9 and 10 define the boundary 
conditions at both membrane sides. In our case, 
ideal conditions will be assumed, so the activity 
coefficients are set to 1. For the case of a salt 
solution of two electrolytes of the same charge 
modulus (z1 = -z2), these equations reduce to eq. 
15 and 16 that express membrane concentrations 
as a function of the concentrations in the 
solution.  
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 Similarly, the application of the boundary 
condition to the permeate side yields to the 
permeate concentrations from membrane 
concentration.   
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4. Modeling with COMSOL 
 

As an example of the solution procedure, 
COMSOL Multiphysics was applied to solve the 
transport of the magnesium sulfate salt through a 
nanofiltration membrane.  

Three different physical modes were 
compared and the subdomain was specified for 
each state variable according to each mode as 
later explained.    

 
4.1 Constant definition  

 
In the appendix, Table 1 shows the problem 

definition; that is, the ion concentrations in the 
feed, solvent velocity and temperature. Solvent 
velocity is consequence of the application of a 
certain pressure (equation 1). 

Table 2 shows the membrane parameters of 
the DSPM used in the calculation example. The 
effective pore radius of the membrane is usually 
obtained through experiments with non-charged 
solutes. The parameter Δx/Ak can be obtained 
using equation 1 through permeation 
experiments with pure solvent. The effective 
membrane charge Xd can be fitted by 
minimization of a cost function based in the 
model solution using data from experiments at 
different solute concentration.  

Table 3 shows the relevant ion properties 
used to calculate the ion coefficients of Table 4 
used in the subdomain equations. Indices are i = 
1 for magnesium and i = 2 for sulfate.  

Table 5 and 6 shows the universal constants 
used and the dependent variables of the model.    
 
4.2 Geometry and meshing  
 

The membrane was defined as a one-
dimensional domain from 0 to Δx = 1.0 × 10-6 m 
(It was assumed a value of the surface porosity 
Ak = 1).  

The membrane domain was meshed using 32 
nodes. A greater number of nodes did not 
substantially improve the quality of the obtained 
solution.  
 
4.3 Subdomain definition for the PDE 
coefficient form mode  
 

The general stationary equation of a PDE in 
coefficient form is: 

 
( ) fac =∇+++−∇−∇ cccc βγα   (19) 

 
Considering the concentration gradient 

defined by equation 14, the following terms were 
identified in equation 19: 
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4.4 Subdomain definition for the Convection 
and Diffusion mode  
 

This mode allowed us to take advantage of 
stabilization techniques included. 
 

( ) 1111 cuRcD ∇⋅−=∇−∇   (20) 
( ) 2222 cuRcD ∇⋅−=∇−∇     

 
The terms R1 and R2 were set as the right 

hand side of eq. 14 particularized for each ion. 
Coefficients D1 and D2 were set to 0. 

The x-velocity was set to u = 1 for both 
subdomain equations. 
 Concentration values in the domain were 
initialized to those calculated at the left boundary 
using equation 9. 
 
 
4.5 Subdomain definition for the Nernst-
Planck without electroneutrality mode.  
 
 Both ion concentrations do not fulfill the 
electroneutrality condition independently from 
the membrane charge. Therefore, the Nernst-
Planck equation without electroneutrality had to 
be used.  

For each ion i, we have: 
 

( ) iiiimiii cRFcuzcD ∇−=∇−∇−⋅∇ uV,   (21) 
 
By comparison of eq. 21 with the ENP (eq. 

2),  D was taken as a corrected diffusivity (eq. 
22) and the ion mobility was calculated using eq. 
23. Other data required were the charge number 
(zi) and the x-velocity (V). 

 
 

∞== ,,, idipii DKDD    (22) 

TR
D

u
G

pi
im

,
, =     (23) 

    

Nevertheless, the Nernst-Planck equation 
does not match exactly the ENP as the latter 
considers a corrected convective term. Therefore, 
the term Ri was used to add the correction for the 
convective term as:     
 

Jv*(1-Kc1)*grad_c1_chekf 
Jv*(1-Kc2)*grad_c2_chekf 

 
4.6 Boundary condition and extrusion of 
variables  
 

For all cases, the left boundary condition was 
established as a concentration boundary 
condition. The solute concentrations in the 
membrane were calculated from the feed 
concentrations using equations 15 and 16.  
 For the “PDE coefficient form” and 
“Convection and Diffusion” modes the right 
boundary conditions was set as a free 
concentration boundary condition; that is, the 
state variables c1 and c2 were imposed. Then, c1 
and c2 were used to calculate the permeate 
concentrations Cp1 and Cp2 using equations (17) 
and (18). These were used as extrusion coupling 
variables from the right boundary to the 
complete subdomain to be used in the differential 
equation.     

For the Nernst-Planck equation without 
electroneutrality, this strategy could not be used. 
However, imposing the concentrations obtained 
for the other procedures conducted to similar 
concentration profiles.    
 
4.6 Solver selection  
 

The direct solver UMFPACK showed to be 
very efficient in terms of stability and 
computational speed.  

At high effective membrane charge (|Xd|> 
50), convergence difficulties occur. So, a 
parametric continuation technique was used. 
This consisted in gradually incrementing Xd from 
a converged solution. Using this technique with a 
parametric segregated solver, a solution could be 
achieved without difficulty in most cases.  
 
 
 
 
 
 
 



5. Results and discussion 
 

Either using the “PDE Coefficient form” or 
the “Convection and Diffusion” mode, the 
solution obtained agreed with the solution 
obtained by the classical iterative procedure 
based in the Runge-Kutta method [3]. 
Computation time using the FEM approach was 
slightly higher, but there were less convergence 
problems using the new procedure.  

Comparing the “PDE Coefficient form” and 
the “Convection and Diffusion” modes, the latter 
approach showed less convergence problems. 
The “Convection and Diffussion” mode also had 
the possibility to use stabilization methods. 
 In the following lines, same results are 
shown to demonstrate the prediction capabilities 
of the model implemented.  

Figure 2 shows the ion concentration profiles 
obtained at three different membrane charges for 
the nanofiltration of the magnesium sulfate 
solution of 50 mol·m-3. As can be seen, a positive 
membrane charge causes in the one hand a 
higher concentration of the anion inside the 
membrane, being in this case slightly smaller 
than in the feed because of the steric effect. On 
the other hand the positive charge causes a 
drastic decrease of the cation concentration in the 
membrane. Inversely, for the case of a negative 
charge, the anion concentration is lower and the 
cation concentration is higher.       

All the effects mentioned have a decisive 
effect on the transport through the membrane.  
For the membrane charges considered (Xd = -50, 
0, +50 mol·m-3) the following permeate 
concentration could be calculated from the ion 
concentrations on the left boundary: 19.0, 11.5, 
3.7 mol·m-3.  

Figure 3 shows a parametric study of the 
effect of the membrane charge on the rejection 
index calculated using equation 24. A minimum 
of retention is observed for a negative near to -40 
mol·m-3. This kind of results can be useful to 
design suitable membrane for treating specific 
solutions.  
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Figure 2. Ion concentrations along the membrane 
thickness for three different effective membrane 

charges. 
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Figure 3. Effect of the membrane charge on 
magnesium sulphate rejection. 

 
 
 
7. Conclusions 
 

The use of COMSOL can greatly simplify 
the study and development of NF models. In 
many aspects, especially convergence, higher 
performance was obtained compared with 
traditional methods. Other important advantages 



were a smaller time of implementation and the 
post-processing tools available.  

The procedure can be extended to system of 
more ions including concentrations as additional 
states. The results obtained with NF models are 
useful for membrane design and operation.   
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10. Appendix 
 

 
Table 1: Problem specification 
 
Param. Value Description 

C’1,f 50 Feed magnesium 
concentration (mol·m-3) 

C’2,f 50 Feed sulfate concentration 
(mol·m-3) 

V 10-4 Solvent velocity (m·s-1) 

T 298 Temperature (K) 

 
 

Table 2: DSPM membrane parameters 
 
Param. Value Description 

rp 0.5 Effective pore radius (nm) 

Δx/Ak 1.0 Ratio of the effective pore 
length to the surface pore 
area (µm)  

Xd [-30, 30] 
 

Effective membrane 
charge (mol·m-3) 

 
 

Table 3: Ion properties 
 
Param. Mg+2 

(i=1) 
SO4

-2 
(i=2) 

Description 

zi 1.350 1.467 Ion charge 

Di,∞ 0.70×10-9 1.06×10-9 Bulk 
diffusivity 
(m2·s-1) 

rS i 0.348 0.231 Solute radius 
(nm) 

 
 
 
 
 
 



 
 
 

Table 4: Calculated ion parameters for rp = 0.5 nm 
 
Param. Mg+2 

(i=1) 
SO4

-2 
(i=2) 

Description 

Ki,c 1.350 1.467 Convective 
hindrance 
factor 

Ki,d 0.0337 0.2058 Diffusive 
hindrance 
factor 

Φi 0.0924 0.2894 Steric 
coefficient 

 
 
Table 4: Universal constants 
 
Param. Value Description 

F 96487 Faraday’s constant 
(C·mol-1) 

RG 8.314 Gas perfect constant 
(J·mol·K-1) 

 
 
Table 5: Other variables 
 
Param. Description 

Ji solute flux (mol·m-2·s-1) 
 

R observed salt rejection (%) 

λi ratio of the Stokes radius of the solute i 
to the effective pore radius 

µ dynamic viscosity of solution (kg·m·s-1) 

Ψm electric potential in the membrane (V) 

∇V Gradient potential (V·m-1) 

ΔP Pressure difference (N·m-2) 

 
   
   
   
 


