Presented at the COMSOL Conference 2008 Hannover

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

Domenico Lahaye and Dalibor Cvoric

Applied Mathematics and Power Processing Units
TU Delft, Delft, The Netherlands

COMSOL Users Conference - Hannover - 2008

- Introduction
- **Inductive Fault-Current Limiter**
- Field-Circuit Coupling
- **Conclusions**

Inductive Fault Current Limiter (Wolfus e.a. 2007)

Current through AC winding - Line current

transparant before fault

limiting after fault

Questions

- How does is work?
- How can it be modeled?
 Magnetic field Electrical circuit coupled model
- How can it be optimized?
 Test case for multilevel (space-mapping) optimization technique

- Introduction
- Inductive Fault-Current Limiter
- 3 Field-Circuit Coupling
- 4 Conclusions

Magnetic Flux Contributions

Superimpose in the presence of saturation

Total Magnetic Flux and Field

Magnetic Flux

Magnetic Field

Magnetic Flux in the Core Legs

FCL Working Principle

DC flux
AC flux
core asymmetry
core saturation

 \Rightarrow current limiting

FCL Working Principle

DC flux
AC flux
core asymmetry
core saturation

 $\Rightarrow \text{current limiting}$

How to formalize/quantify?

- Field-Circuit Coupling

Current in RL Circuit

• line current - current through AC winding: *I*(*t*)

$$V_{in} = V_R + V_L = RI + \frac{d(LI)}{dt}$$

$$V_{in}$$

$$V_{in}$$

$$V_{in}$$

$$V_{in}$$

Current in RL Circuit

• line current - current through AC winding: I(t)

Inductive Fault-Current Limiter

$$RI + \frac{d(LI)}{dt} = V_{in}$$

- model fault by allowing a drop in resistive voltage counteracted by surge in induced voltage
- induced voltage controlled through impedance: L(t)

$$L(t) \sim \mu_r(t)$$
 and $\frac{d\mu_r}{dt} \neq 0$ implies $\frac{dL}{dt} \neq 0$

Impedance (L) and Core Permeability (μ_r)

desaturation

- ightarrow increase of permeability $\mu_{\it r}$
- \rightarrow increase of impedance L
- → increase of induced voltage

Resistance Drop and Induced Voltage

Induced Voltage Computation

- S_{cr} : core cross-section S_{cl} : coil cross-section *N*_t: number of turns
 - ℓ_z : length in z-direction

induced voltage

$$V_{ind} = -N_t \frac{d}{dt} \int_{S_{cr}} \mathbf{B} \cdot d\mathbf{S}$$
 [Ampère - Lenz Law]
= $\frac{N_t \ell_z}{S_{cl}} \int_{S_{cl}} E_z dS$ [homogenization]

can be generalized to 3D models

Magnetic Field- Electrical Circuit Coupling

- Magnetic Field
 PDE for (component of) the magnetic vector potential in the structure of the FCL
- Electric circuit
 ODE for the current through the AC coil Line current
- Coupling through the magnetically induced voltage integration coupling variable

3D Results

Geometry

Magnetic Field

3D Results

End-Effects important - Need to be taken into account

Field-Circuit Coupling

- Field-Circuit Coupling
- **Conclusions**

Conclusions

- we presented a field-circuit coupled of an inductuive fault current limiter
- two-dimensional model allows to illustrate and quantity the current limiting principle
- three-dimensional model is required for a more realisitic modeling

Further Information

- Wolfus e.a., Fault Current Limiters (FCL) with the Cores Saturated by Superconducting Coils, (WO 2007/029224 A1), March 2007.
- author: ta.twi.tudelft.nl/nw/users/domenico/

Vielen Dank!