

MRI Birdcage RF Coil Resonance

with

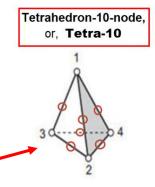
Uncertainty

and

Relative Error Convergence Rates (*)

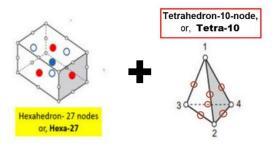
Dr. Jeffrey T. Fong, P.E.

Physicist and Project Manager
Applied & Computational Mathematics Division
National Institute of Standards & Technology (NIST)
Gaithersburg, MD 20899-8910, U.S.A.
http://www.nist.gov/itl/math/Jeffrey-t-fong.cfm
(301) 975-8217 fong@nist.gov



Outline of a 20-minute Talk (24 slides)

[4] The Governing Equations.


The Geometry of a Birdcage RF Coil.

The COMSOL Build for Two Meshes.

[10] Mesh-1 (All Tetra-10, automatic):

[4] Mesh-2 (Mixed Hexa-27 & Tetra-10).

[5] Solution with 2 Metrics for Mesh-1 and -2.

[1] Concluding Remarks.

The Governing Equations.

Maxwell's Equations:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 Faraday
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
 Ampere
$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$
 Gauss

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$
 Continuity

(follows from Ampere and Gauss electric)

Constitutive Relations:

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P} \qquad \boldsymbol{\varepsilon} = \text{permittivity (farads/meter)}$$

$$\mathbf{B} = \boldsymbol{\mu}_0 (\mathbf{H} + \mathbf{M}) \qquad \boldsymbol{\mu} = \text{permeability (henrys/meter)}$$

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} \qquad \boldsymbol{\sigma} = \text{conductivity (siemens/meter)}.$$

E: electric field intensity, [V/m]

D: electric displacement or electric flux density, [C/m²]

P: electric polarization vector, [C/m²]

B: magnetic flux density, $[Wb/m^2]=[T]$

H: magnetic field intensity, [A/m]

M: magnetization vector, [A/m]

J: current density, [A/m²]

ρ: electric charge density, [C/m³]

- · Only first two Maxwell's equations (Faraday and Ampere) are independent
- Gauss (electric and magnetic) equations follow from first two when supplemented by charge continuity
- Six equations (Faraday + Ampere) and six unknowns (E, H)

The Governing Equations.

Frequency Domain Equations Solved in RF

Harmonic fields:
$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})e^{j\omega t}$$
, $\mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})e^{j\omega t}$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Faraday:
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 $\xrightarrow{\frac{\partial}{\partial t} \to j\omega}$ $\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H}$

$$\nabla \times \mathbf{E} = -j\omega \mu \mathbf{E}$$

Ampere:
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\nabla \times \mathbf{E} = -j\omega\mu \mathbf{H}$$

$$\nabla \times \mathbf{H} = \sigma \mathbf{E} + j\omega\varepsilon \mathbf{E}$$

$$\nabla \times \mathbf{H} = j\omega\varepsilon_c \mathbf{E}$$

$$\varepsilon_c = \varepsilon - j\frac{\sigma}{\omega}$$

$$\nabla \times \mathbf{H} = j\omega \varepsilon_c \mathbf{E}$$

$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega}$$

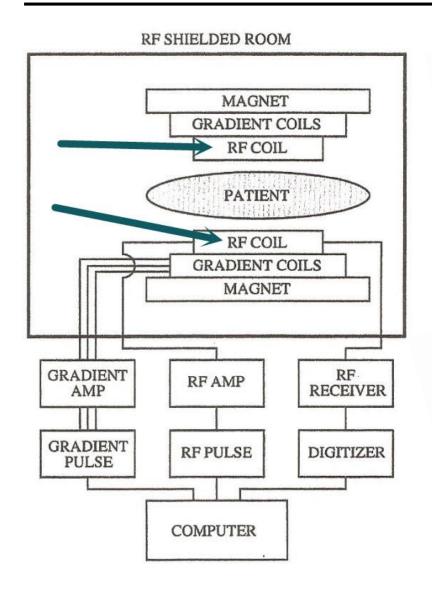
Wave Equation for E

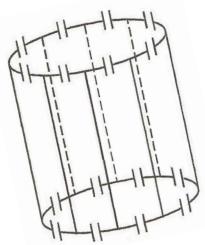
$$\nabla \times \left| \begin{array}{c} \frac{1}{\mu} \nabla \times \mathbb{E} = -j\omega \mathbb{H} \end{array} \right|$$

$$\Rightarrow$$

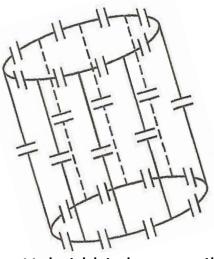
$$\nabla \times \left| \frac{1}{\mu} \nabla \times \mathbf{E} = -j\omega \mathbf{H} \right| \qquad \qquad \nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{E} \right) = -j\omega \underbrace{\nabla \times \mathbf{H}}_{j\omega\varepsilon} \underbrace{\mathbf{E}}_{\varepsilon}$$

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{E}\right) - \omega^2 \varepsilon_c \mathbf{E} = 0$$

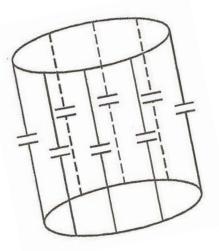

This is the equation solved in .emw


$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega}$$

Once **E** is solved for, then **H** is calculated from Faraday: $\mathbf{H} = -\frac{1}{i\omega\mu}\nabla \times \mathbf{E}$

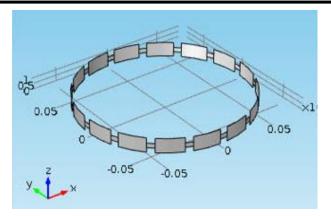


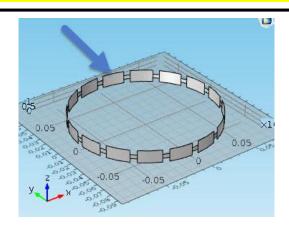
The Geometry of a Birdcage RF Coil.

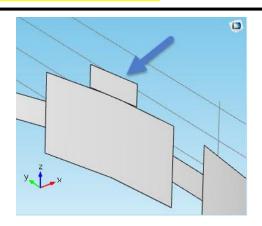


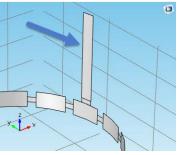
Highpass birdcage coil

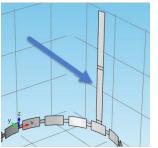
Hybrid birdcage coil

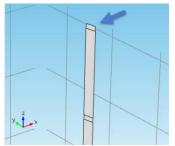

Lowpass birdcage coil

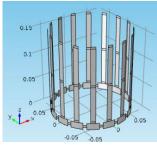


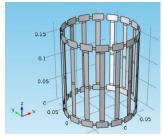

Jeffrey T. Fong, NIST, Gaithersburg, MD 20899 USA. Tel: 1-301-975-8217 Email: fong@nist.gov

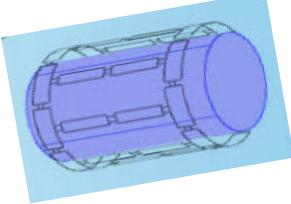


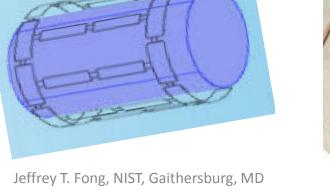

The Geometry of a Birdcage RF Coil.

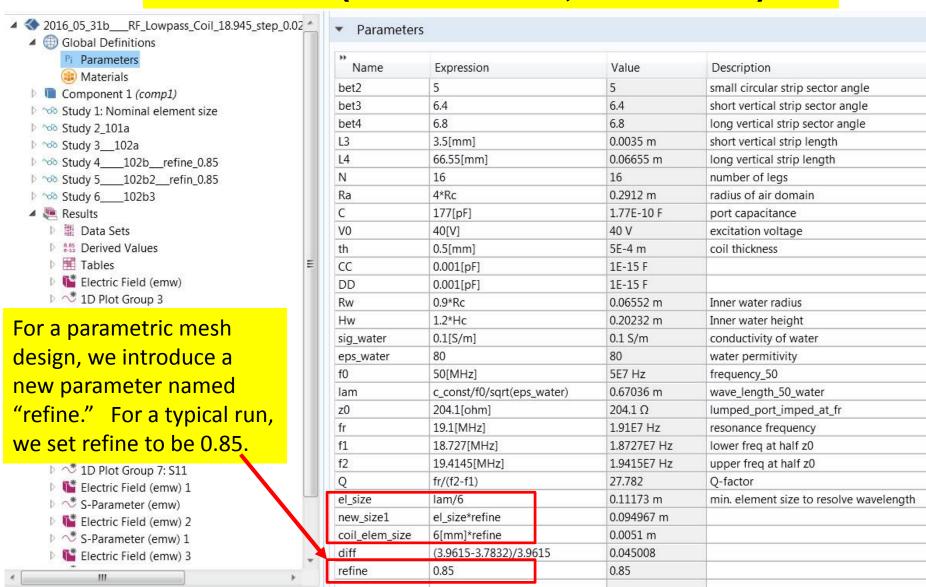




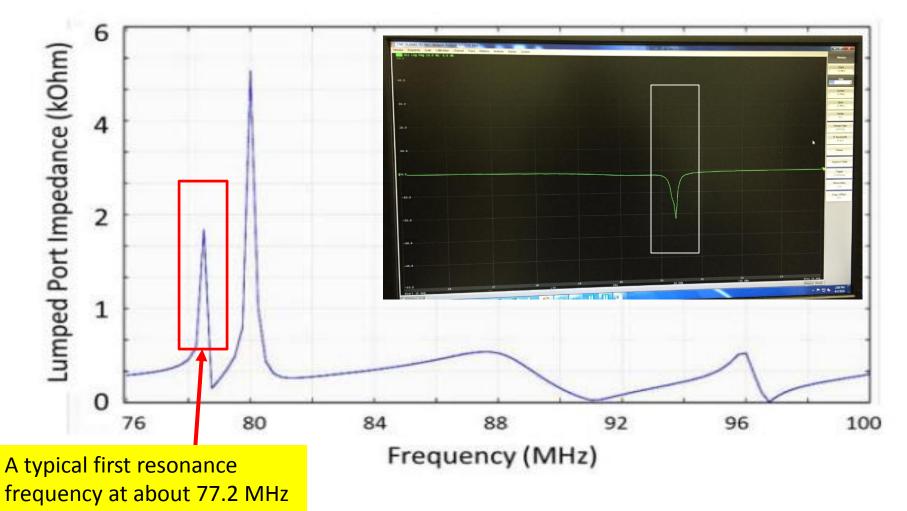








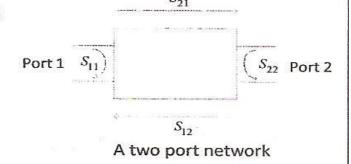
20899 USA. Tel: 1-301-975-8217 Email: fong@nist.gov


Jeffrey T. Fong, NIST, Gaithersburg, MD 20899 USA. Tel: 1-301-975-8217

Email: fong@nist.gov

Typical Analysis Results for Finding Resonance Frequencies

Jeffrey T. Fong, NIST, Gaithersburg, MD 20899 USA. Tel: 1-301-975-8217 Email: fong@nist.gov



Typical Analysis Results for Finding S-Parameters

S-Parameters

- S-parameters originate from transmission-line theory and are defined in terms of transmitted and reflected waves.
- · S-parameters are complex-valued, frequency dependent matrices.
- For a device with n ports, the S-parameters are: $S = \begin{bmatrix} S_{21} & S_{22} & \dots & S_{2n} \\ \dots & \dots & \dots & \dots \\ S_{n1} & S_{n2} & \dots & S_{nn} \end{bmatrix}$
 - S_{21} : transmission coefficient from port 1 to port 2 S_{31} : transmission coefficient from port 1 to port 3
- Time-average power reflection coefficient: $|S_{11}|^2$
- Time-average power transmission coefficient : $|S_{21}|^2$

S-Parameters (cont'd)

S-Parameter Variables

- Automatically generated when Port boundary conditions are used.
- Port names (use numbers for port names) determine the variable names.
- For model with two ports with the numbers 1 and 2 and Port 1 is the active, generated variables are:

emw.S11 is the S-parameter for the reflected wave emw.S21 is the S-parameter for the transmitted wave

S-Parameters are also available on dB scale: emw.S11dB and emw.S21dB

$$S_{dB} = 20\log_{10}|S|$$

■ Use Port Sweep feature to cycle through active ports to compute the entire S-matrix and export it to a Touchstone file format

S-Parameters (cont'd)

Power Flow Normalization

Active port 1: $S_{11} = \frac{\int_{\Omega} (\mathbf{E} - \mathbf{E}_1) \cdot \mathbf{E}_1^* dA_1}{\int_{\Omega} \mathbf{E}_1 \cdot \mathbf{E}_1^* dA_1}$

We will compute **S11** and R. **Freq.**

Passive port 2:
$$S_{21} = \frac{\int\limits_{\partial\Omega} \mathbf{E}_2 \cdot \mathbf{E}_2^* dA_2}{\int\limits_{\partial\Omega} \mathbf{E}_2 \cdot \mathbf{E}_2^* dA_2}$$

- Port fields E₁, E₂ are normalized such that they represent the same power flow through the respective ports
- Amount of power flowing out of a port is given by the normal component of the Poynting vector

$$\mathbf{n} \cdot \mathcal{P}_{av} = \mathbf{n} \cdot \frac{1}{2} \operatorname{Re} (\mathbf{E} \times \mathbf{H}^*)$$

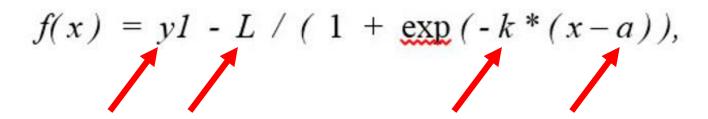
Power flow can be expressed directly in terms of the electric field for TE, TM, and TEM waves

11

For our first FEM modeling exercise with uncertainty quantification (UQ), we choose two basic mesh designs, namely, all-tetra, and mixed (about 90 % hex, and 10 % tetra).

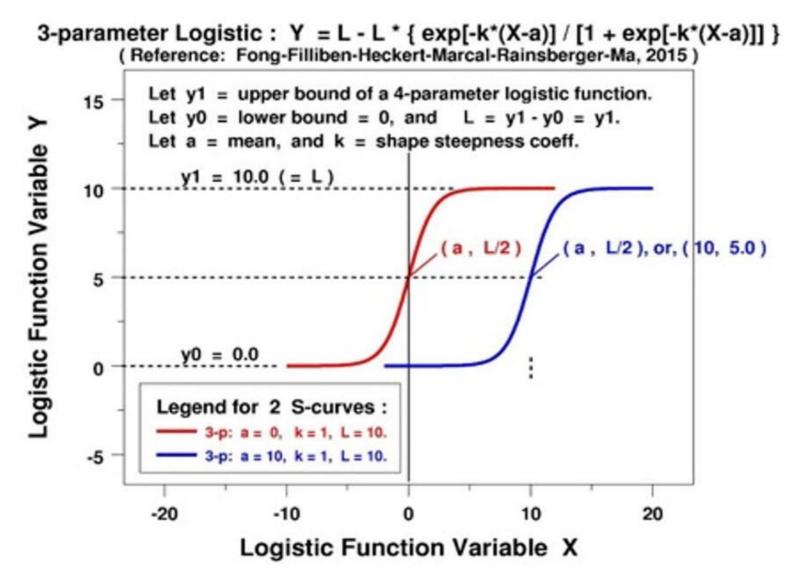
For the all-tetra design, we chose to make 5 runs at refine = 0.95, 0.90, 0.85, 0.80, and 0.70. Typical results for two refine values, 0.90, and 0.70, are given on the right.

req (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11 component (dB)
19	208.84831886025745	-3.743794980021971
19.002499999999998	208.8968447247037	-3.7693201330844888
19.005	208.90478243559104	-3.7950100967473093
19.0075	208.87339085402255	C44 - 2 70E04 4B
impodonoo	208.80177762727385	S11 = -3.79501 dB
. impedance	208.68678760447125	-3.872732561855133
19.015	208.53330378386337	-3.8989093240703587
19.0175	208.33797275502667	-3.9252028172561095
19.02	208.1002166367731	-3.951678540395001
freq (MHz)	abs(emw.Zport_1) (Ω)	
		C
	205.73600837159225	S-parameter, dB, 11 component (dB) -3.629128483187789
18.842499999999999	205.73600837159225	-3.629128483187789
18.842499999999999 18.845	205.73600837159225 206.0193049610616 206.25967500607823	-3.629128483187789 -3.654397634785609
18.8424999999999994 18.845 18.8475	205.73600837159225 206.0193049610616 206.25967500607823	-3.629128483187789 -3.654397634785609 -3.6799084891655114
18.842499999999994 18.845 18.8475 18.84999999999999	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876
18.842499999999994 18.845 18.8475 18.849999999999994 18.8525 18.855	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406
18.842499999999994 18.845 18.8475 18.849999999999994 18.8525 18.855	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724
18.842499999999994 18.845 18.8475 18.849999999999994 18.8525 18.855 18.85749999999999	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009 206.83494111643256	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724 -3.7831374858155793 -3.809269064145175
18.842499999999994 18.845 18.8475 18.8499999999999994 18.8525 18.855 18.857499999999998 18.86 18.8625	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009 206.83494111643256 206.87822464742388	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724 -3.7831374858155793
18.842499999999994 18.845 18.8475 18.849999999999994 18.8525 18.855 18.857499999999998	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009 206.83494111643256 206.87822464742388 206.87787773959104	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724 -3.7831374858155793 -3.809269064145175
18.842499999999994 18.845 18.8475 18.8499999999999994 18.8525 18.855 18.8574999999999998 18.86 18.8625 **impedance	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009 206.83494111643256 206.87822464742388 206.87787773959104 206.83759279056358	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724 -3.7831374858155793 -3.809269064145175 S11 = -3.80927 dB
18.842499999999994 18.845 18.8475 18.8499999999999994 18.8525 18.855 18.8574999999999998 18.86 18.8625 **impedance	205.73600837159225 206.0193049610616 206.25967500607823 206.4655996744766 206.62808565600128 206.7541345254009 206.83494111643256 206.87822464742388 206.87787773959104 206.83759279056358 206.7509627864563	-3.629128483187789 -3.654397634785609 -3.6799084891655114 -3.7054655121170876 -3.731227753932406 -3.7570678989866724 -3.7831374858155793 -3.809269064145175 S11 = - 3.80927 dB -3.8887157268720642



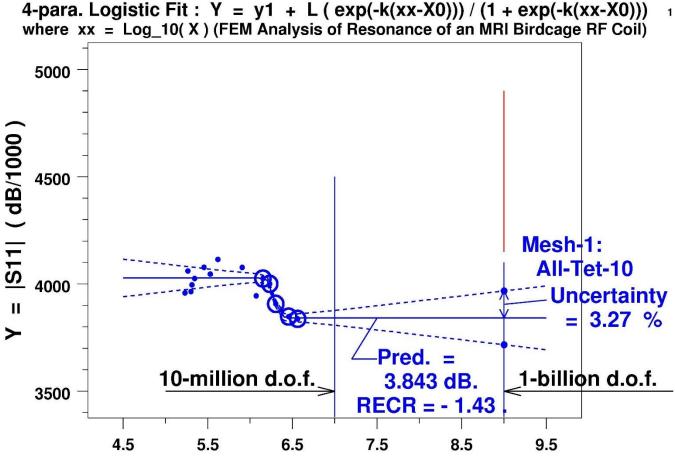
What is a

nonlinear least squares


logistic function fit?

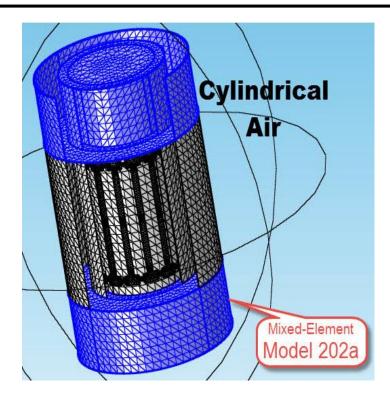
Ans. Pierre Francois Verhulst (1845)

Jeffrey T. Fong, NIST, Gaithersburg, MD 20899 USA. Tel: 1-301-975-8217 Email: fong@nist.gov



Mesh No.	Refine Para- meter	Degree of Freedom	Resonant Frequency (MHz)	S11 (dB)
1	1.00	169,906	19.666	-3.958813
2	0.90	183,408	19.652	-4.060869
3	0.80	199,594	19.652	-3.964955
4	0.70	205,312	19.644	-3.996195
5	0.60	221,120	19.626	-4.026074
6	0.50	284,826	19.597	-4.078074
7	0.40	337,660	19.589	-4.046671
8	0.35	415,914	19.558	-4.114915
9	0.31	805,674	19.447	-4.077531
10	0.24	1,179,720	19.404	-3.9450497
11	0.23	1,416,060	19.369	-4.026016
12	0.21	1,703,198	19.345	-4.000950
13	0.19	2,005,360	19.342	-3.907660
14	0.17	2,849,370	19.299	-3.848283
15	0.15	3,640,696	19.292	-3.837470

6/22/2017 at 11:50 EDT



LOG_10 (X), X = degrees of freedom (d.o.f.) of COMSOL runs of 15 All-Tetra-10 meshes (blue dots).

rerop2c 32c.dp + 32 15sf 8 t10 + 32 5s.dat

Mesh-2 (Mixed Hexa-27 & Tetra-10).

Results with sweep step Δf=0.0025MHz

refine	d.o.f.	Resonant (MHz)	S11, dB	
1.0	366,804	18.5825	8.5825 -4.6977	
0.9	357.140	18.550	-4.6209	
0.8	500,500	18.480	-4.6035	
0.7 641,130		18.395	-4.5993	
0.6	818,042	18.385	-4.5794	
0.5	1,541,544	18.280	-4.4929	

d.o.f. not smooth, DISCARD

refine = 1.0

freq (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11 co	
18.5675	167.5117256368121	-4.541666878029899	
18.57	167.6089499414505	-4.56741633987816	
18.572499999999998	167.6912612243203	-4.593215307739826	
18.575	167.75138023125416	-4.6191973049909025	
18.5775	167.7954466988888	-4.6452399801370605	
18.58	167.81783681210047	-4.671458766028917	
18.5825	167.82397143870503	-4.697721376795229	
18.585	167.80847162821925	-4.724159675417922	
18.5875	167.77420830076792	-4.750717298600533	
18.59	167.7205741390706	-4.777375239121876	

refine = 0.9

freq (MHz)	obs(emw.Zport_1) (Ω)	S-parameter, dB, 11
18.535	170.50619960570068	-4.46/1244466482608
18.537499999999994	170.7120937761477	-4.492535083533854
18.54	170.79709903985378	-4.517996878745572
18.542499999999997	170.86437562537344	-4.543524673575717
18.544999999999998	170.9103278826509	-4.569207462844624
18.5475	170.93754692342865	-4.594953017355833
18.54999999999997	170.94202080485647	-4.620892645177169
18.5525	170.92931349620483	-4.646381181853474
18.555	172.89473976210573	-4.673014972544322
18.557499999999999	170.84044498471246	-4.699262389142246

20899 USA. Tel: 1-301-975-8217 Email: fong@nist.gov

Mesh-2 (Mixed Hexa-27 & Tetra-10).

refine = 0.8

freq (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11 c	
18.4725	170.5724311167183	-4.525864352508932	
18.474999999999994	170.6327832032265	-4.551616006440511	
18.4775	170.67161080032866	-4.577521081345017	
18.48	170.69180621727514	-4.603516471311001	
18.482499999999998	170.69066232244325	-4.629640852289745	
18.485	170.67016522823252	-4.655876354784988	
18.4875	170.628157518795	-4.682247391897374	
18.49	170.5674711672644	-4.708726155498152	
18.4925	170.48450675325503	-4.735349991705128	
18.494999999999997	170.38296165323393	-4.762044131788831	

refine = 0.7

freq (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11 co	
18.3825	170.23704061575592	-4.468536232065694	
18.38499999999998	170.33687573249475	-4.494460969534298	
18.3875	170.4176780218532	-4.520422373865811	
18.39	170.4762371973736	-4.546631016069091	
18.3925	170.51580685609602	-4.5729249078521725	
18.395	170.53399811332704	-4.5993308926209835	
18.3975	170.53381867829094	-4.62580583165259	
18.4	170.50966495263634	-4.652516611903125	
18.4025	170.46751747769167	-4.679284636043822	
18.40499999999998	170.40308274732632	-4.706223726266241	

refine = 0.6

freq (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11	
18.3725000000000002	171.52455153345858	-4.449811397783272	
18.375	171.61963576211897	-4.475491960891757	
18.377499999999998	171.69613845218075	-4.501305600013004	
18.380000000000003	171.7520877371454	-4.527188984430895	
18.3825	171.78769317641454	-4.553223706678104	
18.384999999999998	171.80130966447052	-4.579405034709617	
18.3875000000000003	171.79564847879826	-4.605669292501719	
18.39	171.7667574256268	-4.632082566900425	
18.3925	171.7185685643193	-4.658624905865834	
18.395000000000003	171.6485198727767	-4.685292763371608	

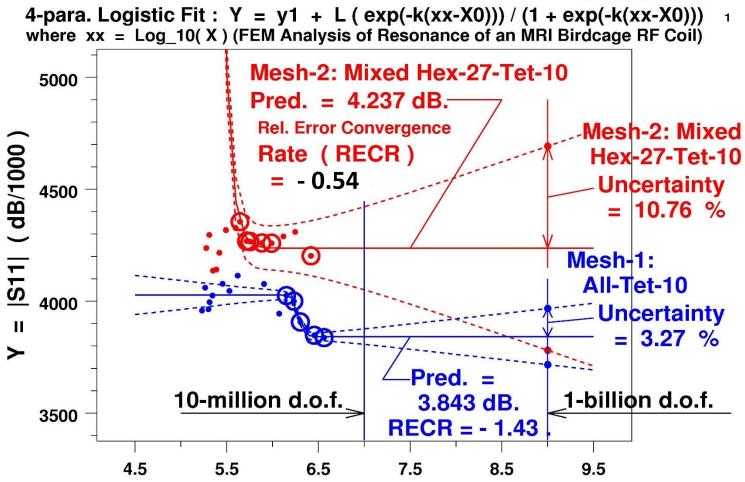
refine = 0.5

freq (MHz)	abs(emw.Zport_1) (Ω)	S-parameter, dB, 11	
18.2675	175.22058038300148	-4.364404706749389	
18.27	175.32209722141712	-4.38985381711027	
18.2725	175.4010241486673	-4.415427669313403	
18.275	175.45906989520614	-4.441121929932902	
18.2775	175.49293687533708	-4.466990483057104	
18.279999999999998	175.50661758390277	-4.492910375465279	
18.2825	175.4966025262042	-4.518995406986013	
18.285	175.46629783086277	-4.545152181921165	
18.287499999999998	175.41227439648904	-4.571438124899577	
18.29	175.33626742103075	-4.597863601040146	

Mesh-2 (Mixed Hexa-27 & Tetra-10).

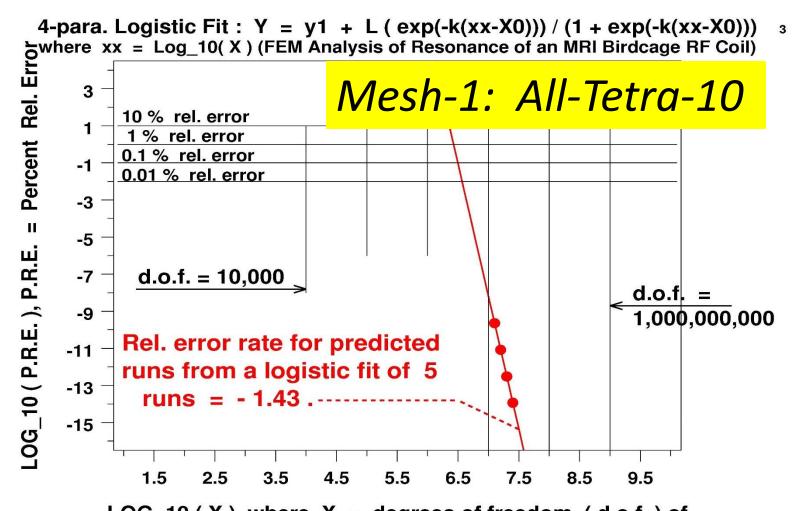
Legend: H-27 = Hex-27 Type Element. T-10 = Tetra-10 Type Element.

Mesh No.	Refine Para- meter	No. of H-27 Elem.	No. of T-10 Elem.	Degree of Freedom	Resonant Frequency (MHz)	S11 (dB)
1	1.00	2,924	13,703	188,812	19.828	- 4.23807
2	0.95	3,292	14,228	203,812	19.801	- 4.29651
3	0.90	3,664	15,683	223,362	19.788	- 4.13724
4	0.85	3,904	17,656	243,182	19.775	- 4.14196
5	0.80	4.754	16,860	262,100	19.756	- 4.21671
6	0.75	4,650	23,544	309,754	19.726	- 4.31801
7	0.70	7,708	24,373	396,044	19.6655	- 4.32680
8	0.65	7,836	24,834	440,528	19.6575	- 4.35539
9	0.60	10,267	31,342	520,506	19.605	- 4.26895
10	0.55	11,848	31,559	566,770	19.58925	- 4.26685
11	0.50	17,346	38,683	764,234	19.544	- 4.26057
12	0.45	22,024	51,146	975,354	19.4904	- 4.25952
13	0.40	30,645	66,002	1,311,222	19.471	- 4.28989
14	0.35	45,353	75,989	1,760,630	19.451	- 4.31001
15	0.30	70.645	104,805	2,615,980	19.401	- 4.20305


Mesh-1 Predictions vs. Mesh-2 Predictions

Mesh No.	Refine Para- meter	Degree of Freedom	Resonant Frequency (MHz)	S11 (dB)	Degree of Freedom	Resonant Frequency (MHz)	S11 (dB)
1	1.00	169,906	19.666	-3.958813	188,812	19.828	- 4.23807
2	0.90	183,408	19.652	-4.060869	203,812	19.801	- 4.29651
3	0.80	199,594	19.652	-3.964955	223,362	19.788	- 4.13724
4	0.70	205,312	19.644	-3.996195	243,182	19.775	- 4.14196
5	0.60	221,120	19.626	-4.026074	262,100	19.756	- 4.21671
6	0.50	284,826	19.597	-4.078074	309,754	19.726	- 4.31801
7	0.40	337,660	19.589	-4.046671	396,044	19.6655	- 4.32680
8	0.35	415,914	19.558	-4.114915	440,528	19.6575	- 4.35539
9	0.31	805,674	19.447	-4.077531	520,506	19.605	- 4.26895
10	0.24	1,179,720	19.404	-3.9450497	566,770	19.58925	- 4.26685
11	0.23	1,416,060	19.369	-4.026016	764,234	19.544	- 4.26057
12	0.21	1,703,198	19.345	-4.000950	975,354	19.4904	- 4.25952
13	0.19	2,005,360	19.342	-3.907660	1,311,222	19.471	- 4.28989
14	0.17	2,849,370	19.299	-3.848283	1,760,630	19.451	- 4.31001
15	0.15	3,640,696	19.292	-3.837470	2,615,980	19.401	- 4.20305

National Institute of Standards and Technology



6/11/2017 at 16:37 EDT

LOG_10 (X), X = degrees of freedom (d.o.f.) of COMSOL runs of 15 All-Tetra-10 meshes (blue dots) and 15 Mixed-H27-T10 meshes (red dots). rerop2c_3235b.dp + $32_15sf_8_110 + 35_15sf_8_mix + 35c_6s + 32_5s.dat$

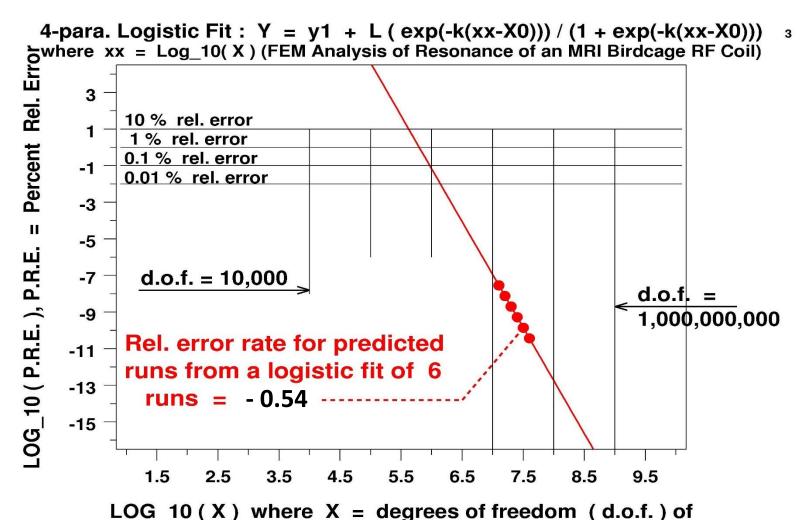
LOG_10 (X) where X = degrees of freedom (d.o.f.) of

Relative Error Convergence Rate Plot for Predicted % Errors at 10-million d.o.f. (red dots)

rerop2c2.dp + 32 5s 11 15 8 t10.dat

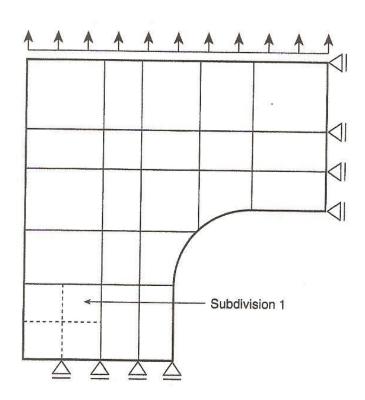
Definition of a

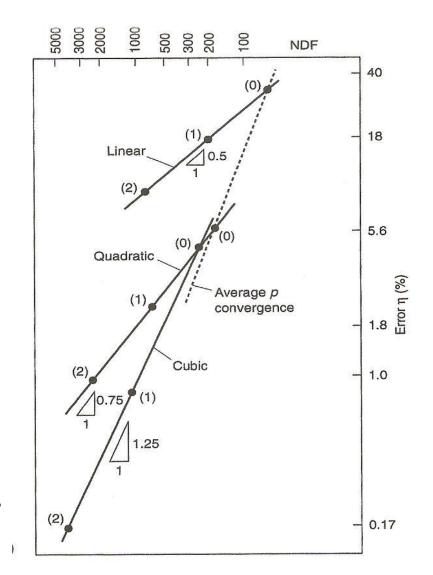
Relative Error Convergence (REC) Rate


```
Let X,i = (d.o.f.), I, X,i+1 = (d.o.f.), i+1.

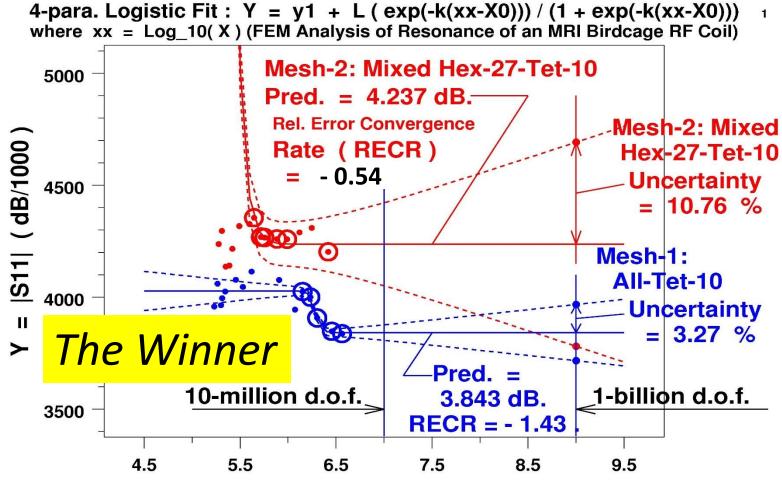
Let x,i = Log_10(X,i), x,i+1 = Log_10(X,i+1).

Let (Pct. Error), i+1 = 100 * (Y,i+1 - Y,i) / Y,i.


(REC Rate), i+1 = { (Pct. Error), i+1 } / (x,i+1 - x,i).
```

Relative Error Convergence Rate Plot for Predicted % Errors at 10-million d.o.f. (red dots)
rerop2c35.dp + 35_6s_not_13_14___8_h27_t10.dat



Ref.: **Zienkiewicz and Taylor**, 2000, The Finite Element Method, Vol. 1: The Basis, 5th ed., pp. 365-370. Butterworth Heinemann (2000)

6/11/2017 at 16:37 EDT

LOG_10 (X), X = degrees of freedom (d.o.f.) of COMSOL runs of 15 All-Tetra-10 meshes (blue dots) and 15 Mixed-H27-T10 meshes (red dots). rerop2c_3235b.dp + $32_15sf_8_110 + 35_15sf_8_mix + 35c_6s + 32_5s.dat$

Concluding Remarks.

- 1. An accurate estimate of **uncertaint**y in FEM-based solution **is essential** in verification (V1) and validation (V2) of the solution when FEM analysis is considered as a "**numerical experiment**."
- 2. To estimate uncertainty of FEM results due to
 - (1) element type and mesh density,
 - (2) **mesh quality** (e.g., mean aspect ratio, standard error of Jacobians, etc.), and
 - (3) solution platform (FEM codes),
 - a nonlinear least squares logistic fit method has been shown to yield FEM results extrapolated to **one billion degrees of freedom** with a measure of **uncertainty** that is useful as a metric for assessing the accuracy of the FEM results.
- 3. For solving the resonance problem of an MRI birdcage RF coil, we chose to work with two mesh designs, Mesh-1 (all tetra-10, automatic), and Mesh-2 (mixed hexa-27 and tetra-10). After running 5 or 6 solutions of each mesh, and fitting each with a 4-parameter logistic function, the extrapolated S11 value to the infinite degrees of freedom and its uncertainty at one billion degrees of freedom for each mesh is given by

```
Mesh-1: S11 = 3.84 dB (Unc = 3.3 %, RECR = -1.43; seJ = 0.45 ). Mesh-2: S11 = 4.24 dB (Unc = 10.8 %, RECR = -0.54; seJ = 0.55 ).
```

4. We conclude that Mesh-1 with less uncertainty, higher abs { rel. error convergence rate }, and a third metric named seJ (standard error of the Jacobian determinants), is now preferred over Mesh-2 for being the more accurate solution estimates.

Certain commercial equipment, instruments, materials, or computer software are identified in this talk in order to specify the experimental or computational procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards & Technology, nor is it intended to imply that the materials, equipment, or software identified are necessarily the best available for the purpose.

Speaker's Biographical Sketch

Dr. Jeffrey T. Fong has been Physicist and Project Manager at the Applied and Computational Mathematics Division, Information Technology Laboratory, **National Institute of Standards and Technology (NIST)**, Gaithersburg, MD, since 1966.

He was educated at the University of Hong Kong (B.Sc., Engineering, first class honors, 1955), Columbia University (M.S., Engineering Mechanics, 1961), and Stanford (Ph.D., Applied Mechanics and Mathematics, 1966). Prior to 1966, he worked as a design engineer (1955-63) on numerous power plants (hydro, fossil-fuel, nuclear) at Ebasco Services, Inc., in New York City, and as teaching & research assistant (1963-66) on engineering mechanics at Stanford University.

During his 40+ years at **NIST**, he has conducted research, provided consulting services, and taught numerous short courses on mathematical and computational modeling with uncertainty estimation for fatigue, fracture, high-temperature creep, nondestructive evaluation, electromagnetic behavior, and failure analysis of a broad range of materials ranging from paper, ceramics, glass, to polymers, composites, metals, semiconductors, and biological tissues.

A licensed professional engineer (P.E.) in the State of New York since 1962 and a chartered civil engineer in the United Kingdom and British Commonwealth (A.M.I.C.E.) since 1968, he has authored or co-authored more than 100 technical papers, and edited or co-edited 17 national or international conference proceedings. He was elected Fellow of ASTM in 1982 and Fellow of ASME in 1984. In 1993, he was awarded the prestigious ASME *Pressure Vessels and Piping Medal.* Most recently, he was honored at the 2014 International Conference on Computational & Experimental Engineering & Sciences (ICCES) with a *Lifetime Achievement Medal.*

Since 2006, he has been Adjunct Professor of Mechanical Engineering and Mechanics at **Drexel University** and taught a graduate-level 3-credit course on "Finite Element Method Uncertainty Analysis." Since Jan. 2010, he has given every 6 months an on-line 3-hour short course at **Stanford University** on "Reliability and Uncertainty Estimation of FEM Models of Composite Structures." In 2012, he was appointed Adjunct Professor of Nuclear and Risk Engineering at the **City University of Hong Kong**, and Distinguished Guest Professor at the **East China University of Science & Technology**, Shanghai, China, to teach annually a 1-credit 16-hour short course on "Engineering Reliability and Risk Analysis."

29