

COMSOL CONFERENCE 2017 BOSTON

Remote Monitoring of Structures in composite material via embedded thermo-chemical sensors

> Behnoush Golchinfar Marcus Rutner Dimitri Donskoy

Boeing 787 Dreamliner

West Mill Bridge, England, 2002 (First Composite bridge in Europe)

Detection of Micro Cracks

Macro Scale Simulation & Validation

COMSOL MULTIPHYSICS : ELECTROMAGNETIC HEATING GOVERNING PHYSICS **RF Module & Heat Transfer** Maxwell's $\nabla \times (\mu_r)^1 \nabla \times \mathbf{E} - k_0^2 (\varepsilon_r - (j\sigma / \omega \varepsilon_0) \mathbf{E} = \mathbf{0}$ Equations $\mu_r = \mu'_r - j\mu''_r$ $\mathcal{E}_r = \mathcal{E}'_r - j\mathcal{E}''_r$ e- $\mathbf{E}(t)$ Magnetic Permeability Electromagnetic **Conduction Current** Dielectric Losses .osses $Q_{\text{Hdinolo}} = \frac{1}{\omega} \omega \mu'' H \cdot H^*$ $= -\sigma E \cdot E$

3 Heat Equation
$$\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (-k\nabla T) = Q$$
$$T = a. Q. \Delta t$$
Negligible
$$Q \sim E^2 1$$
$$T \sim E \rightarrow \Delta T = Q. \Delta t = Q. \Delta t$$

1870

Challenges in first Simulations

Challenge of finding electrical and thermal properties of composite

	Kevlar/Epoxy	Water
Density [kg/m ³]	1450	1000
Thermal Conductance [W/(m × K)]	0.65	0.6
Heat Capacity at Constant Pressure [J/(kg×K)]	1420	4181.8
Relative Dielectric Permittivity	4 – 0.12 <i>j</i>	80.36-9.36j
Electric Conductivity [S/m]	0.8×10^{-3}	0.025

Simulation Results

- Thermal signal on surface of Kevlar/epoxy matrix composite specimen when exposed to 2.45GHz Microwave.
- Variation of polar material volume and composite layup.

Experimental Results

8

Parametric Study on Kevlar Composite Patch

Expose composite to Plane wave

Parametric Study: Composite without water inside-Geometry Effect

SURFACE MAXIMUM TEMPERATURE

No consistent change has been observed by changing shape in the maximum surface temperature, more investigation has to be done

Results from Parametric Study in Composite Patch

Maximum Surface Temperature for varied Electrical Field and Frequency

Parametric Study on Water Droplet Temperature Plot Droplet's Geometry y z x

Parametric Study on Water Droplet`s result

Base Model Characteristics					
Droplet`s Diameter	Initial Temperature	Frequency	Electric Field Amplitude	Time of Exposure	
1 mm	20°C	3.45 GHz	35000 V/m	4 s	

Results for The Water Droplet`s Parametric Study

Maximum Temperature on the Surface

Parametric Study Composite with embedded water droplet

Simulation Results- Composite with embedded water droplet

Summary

Two different types of simulation with RF and Heat Transfer modules has been conducted:

- Microwave oven example was used: Microwave heating of the kevlar specimen in Macro-scale
- PML was used with Plane wave radiation: composite patch and small droplets were exposed to plane wave.

Future plan:

Manufacturing a prototype of the composite containing micro-size water channels for validation.

THANK YOU

ANY QUESTIONS?

18

Test Specimen

Kevlar fiber reinforced matrix composites with embedded sensing string

- Coupling two different physics:
- Electromagnetic Heating $P_{\nu} = 2\pi f \epsilon_0 \epsilon'' E^2$
- Heat Transfer : $\rho C_p \frac{\partial T}{\partial t} = k \nabla^2 \mathbf{T} + P_v$

Experimental Test/ Results

- Injecting water as polar material in middle channel of the sample
- Heating up surface with microwave
- Visualizing surface temperature signal using infrared camera

Summary

- Novel SHM method coupling the mechanical, chemical and thermal domains
- Detection of internal defects in composites
- Large coverage, no power source required, in-situ real time detection and ease of interpretation
- Sensitivity studies → polar material quantity and composite layup
- Outlook:
 - Manufacturing of embedded sensing string network
 - Diagnostics and Prognostics supporting integrity monitoring