Time domain construction of acoustic scattering by elastic targets through finite element analysis

Aaron Gunderson*, Blake Simon, Anthony Bonomo, Marcia Isakson Applied Research Laboratories University of Texas at Austin * aarong@arlut.utexas.edu

Work supported by the Office of Naval Research, Ocean Acoustics

COMSOL CONFERENCE 2017 BOSTON

Background: Acoustic target scattering problems

- Applicable to problem of underwater target detection/classification
- Very few known analytic solutions

- Sphere, infinite cylinder...

- Modeling techniques include
 - FEM, Ray theory, Kirchhoff approx., propagation models...
- Most data-model comparisons appear in the frequency (F.D.) rather than time domain (T.D.)

Advantages of a time domain model

- Experimental data naturally obtained in time domain
 - In situ data/model comparison

 T.D. useful for separation/isolation of distinct arrivals which often interfere in F.D. (a)

Finite element models (COMSOL)

- High fidelity, wide applicability
- COMSOL capable of solving full 3D model for any target in any environment
- Fourier synthesis can be used to transform result to time domain

Fine frequency sampling \rightarrow Long time window Wide frequency range \rightarrow Better time resolution

Axial wavenumber decomposition (AWD)

- Uses 2D geometry for 3D axisymmetric targets
 - 1) Decompose incident field into Fourier components

$$p_{inc}(r,\theta,z) = \sum_{m=-\infty}^{\infty} [p_m(r,z) \exp(-im\theta)]$$

2) The m'th component is given by

 $p_m(r,z) = (i^m) \exp\left(-ikz\sin\phi\right) J_m(-kr\cos\phi)$

- 3) Solve a series of 2D COMSOL problems, each with a different incident component $p_m(r, z)$.
- 4) Compose full 3D scattered field, analogous with1)

[Zampolli et. al., JASA **122**, 1472-1485 (2007)] [Bonomo and Isakson, Proc. COMSOL Conf., Boston (2016)]

COMSOL: Problem setup **Target:** User-input weak-form PDE interface - COMSOL's built-in elastic domain interface inconsistent with AWD PML $\int_{\Omega_s} (-\omega^2 \rho_s u_i \delta u_i + \sigma_{ij} \delta \epsilon_{ij}) d\Omega - \int_{\partial \Omega_s} t_i \delta u_i dS = 0$ Water Sphere [Zampolli et. al., JASA 122, 1472-1485 (2007)]

Water: Fluid: Pressure Acoustics, Freq. Domain (Acoustics mod.)

- Incident plane wave constructed through AWD, applied as a background pressure field

Perfectly Matched Layer (PML): COMSOL built-in feature

- Enforces Sommerfeld radiation condition
- Absorbs outgoing energy at near-normal incidence
- Thickness of at least one acoustic wavelength in water, λ_f

Mesh and far-field calculation

Mesh: Free triangular

- Maximum element size: $\lambda_f/6$
- Thin boundary layers at interfaces, $\sim \lambda_f / 60$

Far-field calculation: COMSOL built-in tool

- Evaluated using solution at PML inner boundary

Far-field results: Exported to MATLAB through LiveLink script

Near-field results: Solution interpolated onto a pre-designed grid in MATLAB using LiveLink's "mphinterp" command

Loop structure and Fourier synthesis

Inner loop: Axial wavenumber decomposition (COMSOL)

- Loop over m from {- m_{max} , m_{max} }, $m_{max} = 1.6k(\lambda_f + a) |\cos \phi|^*$

- Export results to MATLAB, interpolate (for near-field), sum over m

Outer loop: Frequency step (MATLAB/Livelink)

- Frequency range, step size chosen to balance computational time demand against needs for time domain duration, step size - Typical frequency range was ka = 1 - 35

Final step: Fourier synthesis (MATLAB/Livelink)

- MATLAB's inverse fast Fourier transform "ifft" command
- Time window determined by the relations:

$$dt = 1/f_{max}$$
 , $t_{max} = (N-1)dt$

*[Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer-Verlag (1998)]

Rigid sphere near field solution

Partial Wave Series (PWS): [Morse and Ingard, *Theoretical Acoustics*, 418-419 (1968)]

FEM

Aluminum sphere far field solution

Aluminum sphere near field solution

Aluminum sphere off-axis incidence

4:1 steel cylinder far field solution

Partial wave series (PWS, approximate): [Stanton, JASA **83**, 64-67 (1988)]

4:1 steel cylinder near field solution

Broadside incidence

End-on incidence

Conclusions

- Time domain models obtainable through Fourier synthesis of FEM results
- FEM results widely applicable and highly exact - Useful for data/model comparisons
- FEM can provide the closest thing to an exact solution

Future Work

- Introduce boundaries (seafloor)
- Apply to more complicated targets and environments \rightarrow Full 3D